Panneau photovoltaïque et algorithme MPPT à base de logique floue

La page est créée Marc Weber
 
CONTINUER À LIRE
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et
algorithme MPPT à base de
       logique floue
 Rapport rédigé dans le cadre de l’UV BA04 –
           Energie renouvelables
  Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER
                Automne 2009 -Responsable UV : Fabrice LOCMENT

                       Panneau photovoltaïque Solar Fabrik SF 130/2,
                      Image extraite du site : http://www.solar-fabrik.de
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

                Introduction

        Le sommet de Copenhague sur le climat qui a eu lieu récemment le prouve : nous sommes face à
intérêt croissant pour les questions de développement durable (préservation des ressources fossiles en
voie de disparition, limitation de l’effet de serre,…). Dans cette optique, les gouvernements favorisent le
développement des solutions à base d’énergie renouvelables. Or, parmi les celles-ci, l’énergie solaire
photovoltaïque constitue celle qui possède le plus large potentiel de développement.

       Ainsi, on ne compte plus le nombre de panneaux photovoltaïques qui fleurissent sur les toits.
Néanmoins, si l’énergie solaire est gratuite, abondante et à priori désormais facilement transformable, il
n’en reste pas moins que les systèmes d’aujourd’hui peuvent encore être améliorés. En effet, la
production d’un panneau photovoltaïque est particulièrement non-linéaire et dépendante de nombreux
paramètres (caractéristiques du panneau mais aussi de l’ensoleillement). De sorte que l’énergie
récupérée n’est pas forcément maximale. Dans ce contexte, de nombreux chercheurs se sont attachés à
inventer des systèmes permettant de récupérer toujours le maximum d’énergie : c’est le principe
nommé Maximum Power Point Tracker (MPPT) qui est l’objet principal de se rapport.

         Dans le cadre de l’UV BA04 et en vue d’une mise en pratique sur les panneaux solaires installés
sur les toits de l’UTC, nous nous sommes intéressés à un algorithme de MPPT particulier : l’algorithme à
base de logique floue. Pour ce faire nous avons d’abord cherché à comprendre et à modéliser le panneau
photovoltaïque étudié (I et II). Puis après une brève justification d’un algorithme MPPT(III), nous avons
étudié les divers principes MPPT connus (IV) et plus présenté plus en détail l’algorithme MPPT en
logique floue (V). La dernière partie du rapport consiste en une analyse comparative des résultats
obtenus (avec/sans MPPT et suivant les différents types de MPPT) nous permettant de conclure quand
à l’efficacité de la MPPT en logique floue (VI).

A noter : le cadre d’étude prend en compte uniquement la récupération de l’énergie solaire sous la forme électrique et aucunement sous la forme
thermique.

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                                    UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

                      Sommaire
Introduction ..........................................................................................................................................................2
Sommaire..............................................................................................................................................................3
I          Panneau photovoltaïque, toute une histoire ...............................................................................................4
      1)      Principe du photovoltaïque ......................................................................................................................4
      2)      Composants et systèmes existants...........................................................................................................5
      3)      Cas particulier du panneau photovoltaïque Solar Fabrik 130/2...............................................................7
II         Du principe aux équations ......................................................................................................................... 10
      1)      D’un modèle de base à une multitude de modèles .............................................................................. 10
      2)      Equations retenues................................................................................................................................ 12
      3)      Modélisation sous Matlab-Simulink ...................................................................................................... 13
III        De la nécessité d’une MPPT ...................................................................................................................... 16
      1)      Préambule ............................................................................................................................................. 16
      2)      Le panneau photovoltaïque du projet pour la récupération d’énergie solaire..................................... 16
IV         MPPT, une bibliographie ........................................................................................................................... 18
      1)      Approche Perturbe and Observe ........................................................................................................... 18
      2)      Approche Open- and Short-Circuit ........................................................................................................ 18
      3)      Approche Incremental Conductance ..................................................................................................... 19
      4)      Approche Logique Floue ........................................................................................................................ 19
V          MPPT en logique floue, présentation du système .................................................................................... 20
      1)      Définition des critères d’entrées ........................................................................................................... 20
      2)      Fonctionnement du système flou.......................................................................................................... 22
VI         Analyse comparative des résultats ............................................................................................................ 25
      1)      Ensoleillement et température considérés ........................................................................................... 25
      2)      Stabilité de l’algorithme (MPPT Flou vs P&O) ....................................................................................... 26
      3)      Efficacité de l’algorithme ....................................................................................................................... 27
Bibliographie...................................................................................................................................................... 33

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                                                        UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

    I        Panneau photovoltaïque, toute une histoire
Avant d’étudier l’algorithme MPPT flou pour la récupération d’énergie, il est nécessaire de comprendre
le principe du panneau photovoltaïque. C’est ce que nous allons voir dès à présent.

             1)      Principe du photovoltaïque
        Initialement, le développement de la technologie s’est développé avec la volonté des entreprises
des télécommunications d’installer des systèmes fonctionnant dans des endroits éloignés des centre
urbains (et donc des réseaux électriques). Le deuxième booster a été la « course à l'espace ». La cellule
solaire a été et reste le meilleur moyen (à moindre coût et le poids) de fournir la quantité d'énergie
requise pendant de longues périodes de séjour dans l'espace. Enfin, la crise énergétique de 1973, a
renouvelé et a élargi l'intérêt pour les applications terrestres.

       Comme cela expliquée sur le site [4], l'énergie solaire photovoltaïque est l'énergie obtenue par
la conversion de la lumière en électricité. Cette énergie est obtenue grâce au phénomène physique
appelé l’effet photovoltaïque. Rapporté par Edmond Becquerel en 1839, le principe est assez simple et
consiste en l'émergence d'une différence de potentiel aux extrémités d'une structure de matériel semi-
conducteur, produit par l'absorption de la lumière (cf. figure 1 extrait du site [3]).

   Figure 1: Schéma synthétique de l'effet photovoltaïque[3]     Figure 2: Effet photovoltaïque à l'échelle de la cellule [5]

       Plus précisément, comme le montre la figure 2 et comme cela est expliqué dans [5], l’effet
photovoltaïque est propre à la cellule (unité fondamentale de conversion). Dans le cas des panneaux
photovoltaïque, les cellules sont réalisées à partir de deux couches de silicium, une dopée P (en général
dopée au bore) et l’autre dopée N (en général dopée au phosphore).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                       UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

         Lorsque les photons sont absorbés par le semi-conducteur, ils transmettent leur énergie aux
atomes de la jonction PN de telle sorte que les électrons de ces atomes se libèrent et créent des
électrons (charges N) et des trous (charges P). Ceci crée alors une différence de potentiel entre les deux
couches. Cette différence de potentiel est mesurable entre les connexions des bornes positives et
négatives de la cellule. La tension ainsi générée peut varier entre 0.3 V et 0.7 V en fonction du matériau
utilisé et de sa disposition ainsi que de la température de la cellule et du vieillissement de la cellule.

             2)    Composants et systèmes existants
                      a)          Types de cellules

        La cellule est l’unité de conversion la plus adaptée à l’effet photovoltaïque. Comme l’affirme le
document [5] et le site [4], les matériaux et la méthodologie utilisée pour la conception de ces cellules
influent sur l’énergie récupérée. Il en résulte que de nombreuses solutions ont été développées et nous
allons brièvement les présenter.

Silicium Monocristallin:

         La cellule de silicium monocristallin est historiquement la plus largement utilisée et
commercialisée. La fabrication de cellules de silicium commence avec l'extraction du cristal de dioxyde
de silicium. Ce matériel est désoxydé dans de grands fours, purifié et solidifié. Ce processus a atteint une
pureté de 98 et 99% ce qui permet un rendement énergétique fort (en effet, plus le revêtement de la
cellule est pur, plus l’effet photovoltaïque est facilité). Le silicium est alors fusionné avec une petite
quantité de dopant, normalement le bore qui est de type P puis coupé en fine tranches d’environ 300
μm. Après la coupe et le nettoyage des impuretés des tranches, des impuretés de type N sont introduite
via un processus de diffusion contrôlée : les tranches de silicium sont exposées à des vapeurs de
phosphore dans un four où la température varie de 800 à 1000 ° C.

        Parmi les cellules photovoltaïques utilisant le silicium comme
matériau de base, les monocristallins sont, en général, celles qui ont les
meilleures performances. Ainsi, les cellules solaires commerciales obtenues
avec le procédé décrit peuvent atteindre un rendement de 15 à 18%.

Silicium polycristallin

        Les cellules en silicium polycristallin sont moins coûteuses que celles en silicium monocristallin
car les processus de préparation des cellules sont moins stricts. Leur efficacité est cependant plus faible.
Le processus de production est semblable à celui présenté précédemment dans le cas de la fabrication
de cellule en silicium mais avec un contrôle moins rigoureux. Il en résulte que les cellules obtenues sont
moins coûteuses mais aussi moins efficace (12,5% de rendement en moyenne).

       Leur intérêt réside dans la multiplicité des formes sous laquelle le
revêtement peut se présenter : lingots à découper, ruban ou fil à
déposer,… Chaque technique permet de produire des cristaux ayant des
caractéristiques spécifiques, y compris la taille, la morphologie et la
concentration des impuretés.

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                    UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

Silicium amorphe

        Les cellules de silicium amorphe diffèrent des cellules présentées précédemment puisque leur
structure présente un haut degré de désordre dans la structure des atomes. L’utilisation de silicium
amorphe pour les cellules solaires a montré de grands avantages à la fois au niveau des propriétés
électriques et le processus de fabrication (processus simpl, faiblement consommateur d’énergie, peu
coûteux, possibilité de produire des cellules avec grands secteurs). Mais, même avec un coût réduit pour
la production, l'utilisation du silicium amorphe a deux inconvénients: le premier est le rendement de
conversion faible par rapport aux cellules de mono et polycristallin de silicium. Le deuxième est le fait
que les cellules sont affectées par un processus de dégradation dans les premiers mois d’opération,
réduisant ainsi leur durabilité.

        En 1993, la production de cellules photovoltaïques a atteint un sommet à 60 MWp, et le silicium
demeure le matériau le plus utilisé. Toutefois, la recherche de matériaux alternatifs est intense et
concentrée dans le domaine des films minces, comme le silicium amorphe. La technologie des cellules
de films minces n’est pas encore maîtrisée mais pourrait s’avérer intéressante car elle utilise moins de
matériau que ceux en structure cristalline et elle nécessite moins d’énergie dans le processus de
fabrication.

                      b)          Une technologie connexe importante : les onduleurs

Outre les cellules photovoltaïques qui, assemblées en séries et en parallèle et encapsulées dans des
modules étanches (protection contre l’humidité, les chocs et autres nuisances) constituent les panneaux
photovoltaïque, d’autres systèmes connexes sont nécessaires pour la récupération d’énergie solaire.
Ainsi, en plus de l’ajout au circuit d’un système MPPT (cf. parties III à V), il est parfois nécessaire de
modifier la nature du courant. « Ceci est possible grâce à des onduleurs qui sont des systèmes
électriques qui transforment le courant continu en courant alternatif. On distingue les onduleurs de
tension (utilisé dans le cadre des panneaux photovoltaïques) et les onduleurs de courant, en fonction de
la source d’entrée continue : source de tension ou source de courant. La technologie des onduleurs de
tension est la plus maîtrisée et est présente dans la plupart des systèmes industriels, dans toutes les
gammes de puissance (quelques Watts à plusieurs MW). » [6].

La particularité des onduleurs pour panneaux photovoltaïques réside dans le fait que la courbe I-V d’un
panneau photovoltaïque est fortement non linéaires. En effet, « en régime permanent établi, la tension
et le courant du capteur sont considérés comme constants. L’onduleur de tension impose alors à sa
sortie un système de tensions sous forme de créneaux modulés en largeur d’impulsions (MLI* ou PWM*
en anglais). Ces créneaux ne posent aucun problème pour l’alimentation d’un moteur, mais sont
incompatibles avec les tensions sinusoïdales du réseau. On place alors entre chaque sortie de l’onduleur
et chaque phase du réseau (onduleur monophasé ou triphasé) une inductance qui joue le rôle de filtre et
permet à l’onduleur de fournir au réseau des courants quasi sinusoïdaux : d’un point de vue formel elle
transforme l’onduleur de tension en onduleur de courant ! » [6]. Plusieurs technologies existent et sont
basés presque exclusivement sur l’utilisation de thyristors (partie non détaillée car ce n’est pas l’objet
de ce rapport).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                    UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

              3)       Cas particulier du panneau photovoltaïque Solar Fabrik 130/2
     Dans le cadre de notre étude expérimentale (cf. V), nous nous sommes appuyés sur les mesures
d’ensoleillement et de température de la ville de Compiègne relevées pendant un an par M. LOCMENT.
Nous avons donc orienté notre étude vers l’application pratique de l’algorithme flou au panneau
photovoltaïque installés sur le toit de Pierre Guillaumat 2 (UTC, Compiègne). Comme chaque panneau
photovoltaïque a des caractéristiques particulières, il nous est apparu intéressant de les rappeler avant
de présenter le modèle Matlab-Simulink qui s’appuie sur ces valeurs caractéristiques. Nous nous
sommes pour cela appuyés sur les informations fournies par l’organisme produisant ces panneaux cf.
[7].

Figure 3: Dessin des
     panneaux
  photovoltaïques
    étudiés [7]

Dimensions :

        Série SF 130/2                    Sans cadre                          Cadre alu

        l x L (mm)                        1485 x 663                          1491 x 669

        Épaisseur (mm)                    5                                   35

        Poids (kg)                        10,5                                12,5

Caractéristiques module:

        Type de module                           SF 130/2-125          SF 130/2-130            SF 130/2-135

        Nombre         de           cellules 36                        36                      36
        (polycristallin)

        Tension max. Système                     1000V                 1000V                   1000V

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                    UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

Caractéristiques électriques en STC (Standard Test Conditions: 1000 W/m2, 25°C, AM 1,5) :

    Puissance nominale*                  Pmax        125 W                 130 W                 135 W

    Limites de tri puissance                         +/- 2,5 W             +/- 2,5 W             +/- 2,5 W

    Tension appr.                        UMPP        17,50 V               17,72 V               17,94 V

    Tension circuit ouvert appr.         UOC         21,53 V               21,69 V               21,86 V

    Courant appr.                        IMPP        7,14 A                7,34 A                7,52 A

    Courant     de    court-circuit ISC              7,84 A                7,96 A                8,08 A
    appr.

Caractéristiques électriques (sous 800 W/m2, NOCT, AM 1,5) :

       Puissance      en      MPP Pmax            89 W                 100 W                   104 W
       appr.

       Tension appr.                  UMPP        16,03 V              16,24 V                 16,45 V

       Tension circuit ouvert UOC                 19,69 V              19,85 V                 20,00 V
       appr.

       Courant appr.                  IMPP        5,54 A               5,69 A                  5,84 A

       Courant de           court- ISC            5,99 A               6,09 A                  6,18 A
       circuit appr.

Sous un ensoleillement de 200 W/m2 et une température de 25 °C, le rendement diminue de 7 % environ par rapport
au rendement en conditions standard STC.

Températures:

       Coefficient de température puissance TK(PMPP)                         -0,47 %/K

       Coefficient de température tension TK(UOC)                            -72 mV/K

       Coefficient de température courant TK(ISC)                            5,45 mA/K

       NOCT                                                                  48°C +/-2K

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                    UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

Autres caractéristiques:

         Raccordement du module                             Système Lumberg: 1,2 m câble de raccordement 4
                                                            mm2

                                                            avec connecteur mâle surmoulé et embase femelle

                                                            (sans cadre: 2 m câble)

         Test haute tension                                 Tension d'essai 3200 VDC /max. 60μA

         Tenue à la grêle **                                Jusqu'à 25 mm de diamètre à 23 m/s

         Résistance à la tempête **                         Vitesse du vent jusqu'a 130 km/h

                                                            = 800 Pa et facteur de sécurité 3

         Charge de neige supportée **                       sans cadre: 2400 Pa =^ 245 kg/m2

         Contrainte testée selon IEC avec cadre: 5400 Pa =^ 550 kg/m2
         61215

* (tolerance +/- 5 %)
** en combinaison avec notre système de fixation brevete Profilink installe selon les recommandations (BP).

Selon le constructeur, ce type de panneau photovoltaïque présente de nombreuses qualités parmi
lesquelles : la stabilité au temps grâce au verre solaire spécial transparent, équipé de filtre UV, un
rendement énergétique élevé grâce à l’utilisation de composants de qualité ajouté au module avec
précisions et un montage rapide du cadre avec un système de fixation breveté. Par ailleurs, il est
homologué/certifié : EN IEC 61215 ed. 2, Classe de protection II et Directive 89/336/CEE (CE),
Directive 73/23/CEE (CE).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                                   UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue
Panneau photovoltaïque et algorithme MPPT à base de logique floue

    II       Du principe aux équations
    Le principe photovoltaïque détaillé dans la partie précédente peut être modélisé sous la forme d’un
schéma électrique équivalent lui-même modélisable sous Matlab-Simulink.

            1)     D’un modèle de base à une multitude de modèles
        Le principe de l’effet photovoltaïque n’est autre que celui d’une diode ainsi « lorsque l’on éclaire
la jonction PN, la cellule étant chargée par une résistance, on observe l’apparition d’un courant inverse I
sous une tension en sens direct V. » [8]

                                 Figure 4: Schéma d'application de l'effet photovoltaïque

        « La caractéristique d’une jonction PN non éclairée est celle d’une diode (idéale). En présence
d’un éclairement, cette caractéristique est décalée vers le bas d’un courant Icc (courant de court-
circuit). De même, elle coupe l’axe des abscisses en Vco (tension maximale de circuit ouvert). » [8]

                 Figure 5: Approximation de la caractéristique courant-tension du panneau photovoltaïque

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                     UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

      La réflexion précédente nous permet d’aboutir au modèle électrique équivalent de la cellule
photovoltaïque suivant :

Figure 6:: Modèle électrique équivalent idéal d'une cellule                                                photovoltaïque [9]

« Pour tenir compte des chutes de tension dans les zones P et N, on doit ajouter une résistance
                                                                                        résis     série
(équivalente) Rs et pour le courant de fuite, une résistance parallèle (équivalente) Rp dans le schéma
équivalent » [8]. Ce dernier se transforme alors de cette manière :

   Figure 7:: Modèle électrique équivalent du
          panneau photovoltaïque [9]

    Le modèle présenté ci-dessus
                          dessus n’est pas universel. Comme l’explique le document [9], de nombreux
auteurs ont proposés des modèles plus sophistiqués qui représente avec plus de précision le
phénomène photovoltaïque. On recense ainsi deux autres modèles :

    -    Le modèle à deux diodes: cette diode supplémentaire permettant de reproduire dans le schéma
         équivalent les effets chimiques de recombinaison des électrons ;

    -    Le modèle à trois diodes : la troisième diode incluant dans le schéma équivalent les effets non
         pris en compte dans les autres modèles (ex : courant de fuite liés aux diodes).

    D’autre part, des modèles plus simplifiés voient
                                               voi    aussi le jour (cf. [10]): la valeur de la résistance Rp
étant généralement haute [9], 9], elle est donc souvent supposée infinie (et donc négligée) dans les
modèles courants, de même, la valeur de la résistance Rs étant généralement basse si l’étude les auteurs
de modèles posent souvent Rs=0 (et  et donc néglige Rs de sorte que l’on
                                                                     l’on revient alors au circuit équivalent
présenté en figure 6).
                    ). Mais ces modèles perdent en précision.

    Le modèle à une diode offre un bon compromis entre simplicité et précision : il apparaît très adapté
à notre étude. On notera que les coefficients d’idéalité sont définis en s’inspirant des valeurs
numériques de la littérature et précisés grâce à l’étude expérimentale (méthode
                                                                        (méthode « pas à pas ») afin de
correspondre au mieux au cas étudié (ici ils ont été définis par M. LOCMENT dans le cadre du TD sur le
panneau solaire photovoltaïque).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                        UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

             2)     Equations retenues
Le modèle électrique équivalent retenu est donc le suivant :

                                                              Ip

En appliquant la loi des nœuds au point rouge on obtient :

                     I = Ip + Ipv - Id                                   soit             Ip = I - Ipv + Id

En appliquant ensuite la loi des mailles (dans la maille de droite), on obtient :

            V = - (Rp Ip + Rs I)                    soit                 V = Rp (I pv - Id - I) – Rs I (Equation 1)

Il reste à exprimer Ipv – Id

Id= ? L’équation de Schokley (=« diode law ») définie la caractéristiques I-V d’une diode idéale,
l’équation dans notre cas est donc la suivante :

                                                      
                                   Id = Io exp                     1 (Equation 2)
                                                            

Où : Io est le courant de fuite (ou reverse saturation current) de la diode (dont la formule est détaillée ci-
après), q est la charge l’électron (≈1.602×10-19C), k est la constante de Boltzmann (≈1.38×10-23J/K), V, Rs et
I sont des caractéristiques issues du circuit équivalent, ns est un facteur correcteur d’idéalité et T (en
Kelvin) est la température mesurée.

Il reste donc à exprimer Io.

En considérant les dépendances entre les différents facteurs, qu’ils soient naturels (comme
l’ensoleillement ou la température extérieure) ou électriques (courant de court-circuit,…), le document
sur lequel nous nous sommes appuyés ([9]) établit l’égalité suivante :

                                                      , ∆
                                         I o =   ! "#, $% ∆⁄&' )
                                                                         (Equation 3)

Où : Voc,n et Isc,n sont respectivement les tension en circuit ouvert et le courant de court-circuit du
panneau à la température nominale, Vt = nskT/q est le voltage thermique des Ns cellules photovoltaïque
connectées en série (NB :ns est un coefficient correcteur d’idéalité), enfin a, Kv et K1 sont des coefficients
correcteurs d’idéalité.

Il est à noter que cette égalité définissant Io n’est pas celle qui est largement reprise dans la littérature
(cf. [10] par exemple) mais elle est plus récente et d’après les tests effectués par l’auteur cette formule
simplifie le modèle et le rend plus précis. ([9], p 1201 dernier paragraphe).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                          UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

Ipv= ? D’après les documents [9] et [10], en considérant les dépendances entre les différents facteurs, on
a:
                                                            +
                                     Ipv = (Ipv,n + K1∆*)        (Equation 4)
                                                            +

Où : Ic,n et Gn sont respectivement le courant généré par la lumière et l’irradiation dans les conditions
nominales.

Les équations obtenues nous permettent de modéliser notre panneau photovoltaïque sous Matlab.

Rappel :

Nous travaillons avec un panneau de type Solar Fabrik 130/2. Les caractéristiques de ce panneau, dont
nous avons besoin pour la modélisation, sont (extraits des tableaux présentés en I-3) :

Caractéristiques électriques en STC (Standard Test Conditions: 1000 W/m2, 25°C, AM 1,5) :

    Puissance nominale*                Pmax        125 W                 130 W                 135 W

    Tension circuit ouvert appr.       UOC         21,53 V               21,69 V               21,86 V

    Courant      de   court-circuit ISC            7,84 A                7,96 A                8,08 A
    appr.

Températures:

       Coefficient de température tension TK(UOC)                          -72 mV/K

       Coefficient de température courant TK(ISC)                          5,45 mA/K

       NOCT                                                                48°C +/-2K

            3)     Modélisation sous Matlab-Simulink
        Les équations retenues ci-dessus peuvent être modélisées sous Matlab-Simulink à partir de
blocs mathématiques basiques présent dans le catalogue Simulink. Le modèle suivant est celui qui nous
a été distribué lors d’une séance de TD au cours du semestre d’étude. Il est particulièrement adapté au
panneau photovoltaïque utilisé par l’UTC, le Solar Fabrik 130/2, présenté précédemment et sur lequel
s’appuie notre étude expérimentale (présentée ultérieurement dans la partie VI). Le modèle est ensuite
commenté afin de mettre en évidence le lien qu’il entretient avec les équations obtenues ci-avant.

        Le modèle ainsi construit fonctionne (testé en TD) et peut à présent être ajouté au circuit
électrique global de manière à récupérer l’énergie issue de l’effet photovoltaïque. C’est ce que nous
allons voir dans la partie suivante.

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                  UV BA04, UTC, A09
Figure 8: Modélisation du panneau photovoltaïque Solar Fabrik 130/2 sous Matlab-Simulink
Figure 9: Version commentée de la modélisation du panneau photovoltaïque Solar Fabrik 130/2 sous Matlab-Simulink
III       De la nécessité d’une MPPT
     Dans ce chapitre, seront explicitées les raisons qui amènent à créer un algorithme MPPT en nous
appuyant sur les données numériques obtenues grâce aux panneaux photovoltaïques implantés sur le
toit de Pierre Guillaumat 2 et aux diverses équipements qui leur sont liés.

               1)       Préambule
       Comme nous l’affirmions en introduction, l’exploitation de l’énergie solaire présente un
potentiel énorme. C’est dans cette optique que sont conçus les panneaux photovoltaïques. Même s’il est
connu que les rendements sont relativement peu élevés (de l’ordre de 30 à 40%), la recherche de la
puissance maximale est nécessaire. Or, les panneaux photovoltaïques sont soumis à des conditions
changeantes au niveau de l’ensoleillement et de la température qui modifie la puissance extractible.

       En effet, sous ces conditions changeantes, la puissance extractible est variable et fonction de la
tension (ou du courant) imposée aux bornes du panneau photovoltaïque. Il est donc nécessaire que le
système d’exploitation s’adapte pour extraire le plus de puissance possible : c’est ainsi que nait en
quelque sorte l’idée de MPPT (Maximum Power Point Tracker).

 Figure 10: Fluctuations de P pour G constant et T variable [12]   Figure 11 : Fluctuations de P pour T constant et G variable [12]

         NB : G = ensoleillement, T = température.

        Les courbes précédentes, extraites de [12], matérialisent bien la nécessité d’un algorithme
d’optimisation d’extraction de la puissance ; cela d’autant plus que dans la réalité, contrairement aux
deux figures ci-dessus, la température et l’ensoleillement varient en même temps.

               2)       Le panneau photovoltaïque du projet pour la récupération
                        d’énergie solaire
        Le panneau photovoltaïque utilisé dans le projet est un panneau Solar-Fabrik SF130/2-125.
Nous l’avons implanté sous Matlab-Simulink et avons simulé son fonctionnement sous des conditions
de température et d’ensoleillement variant au cours de la période d’étude (fixée à 24h et, cela, pour
toute l’étude présentée par la suite). Dans le cas où nous n’agrémentons pas ce modèle de panneau d’un
algorithme dit MPPT, le courant optimal est celui spécifié par le constructeur (7,14A).
Panneau photovoltaïque et algorithme MPPT à base de logique floue

        Le schéma du modèle sous Matlab-Simulink est alors le suivant :

                 Figure 12: Extraction de l'énergie photovoltaïque: schéma équivalent sous Matlab-Simulink

        Ce modèle permet d’extraire environ 0.12 kWh (cf. Courbe ci-dessous).

                         Figure 13: Energie récupérée pour un panneau photovoltaïque sans MPPT

        Cette énergie récupérée est bien faible. Cela est même encore plus évident lorsque l’on compare
les résultats à ceux obtenus en Travaux Dirigés après utilisation de l’algorithme Perturbe and Observe
(technique expliquée dans le chapitre suivant). En effet, par le biais cette dernière méthode, nous
récupérons 0.6 kWh sur la période d’étude, soit plus 3.5 fois plus !

    Il faut apparaît donc nécessaire d’adjoindre un algorithme MPPT à chaque panneau photovoltaïque.
Toutefois, une question demeure : existe-t-il un algorithme encore plus performant que Perturbe and
Observe ?

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                      UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

    IV       MPPT, une bibliographie
    Nous allons à présent passer en revue les solutions MPPT actuellement disponibles sur le marché.

            1)     Approche Perturbe and Observe
      Algorithme le plus répandu, Pertube and Observe (P&O) repose sur la pertubation[ici une
augmentation ou une diminution] de la tension Vref, ou du courant Iref, et l’observation de la
conséquence de cette perturbation sur la puissance mesurée (P=VI).

        Explication en utilisant la perturbation de Vréf :

Si dP=Pk-Pk-1 0 et si
dVréf0, on augmente Vréf.

                        Figure 14: Schéma explicatif de l'algorithme Pertub and Observ (P&O) [13]

        Facile à utiliser et à implanter dans un système de contrôle d’un panneau photovoltaïque, P&O
présente toutefois des inconvénients. En effet, il arrive que P&O ne permette pas d’atteindre le
maximum de puissance en cas de fluctuation très rapide de l’ensoleillement [13]. Même en cas de
conditions d’exploitation constantes, on observe des variations de V et de I (donc nécessairement de P
par la même occasion) [13].

            2)     Approche Open- and Short-Circuit
        Cette méthode de détermination du MPP (Maximum Power Point) est basée sur la mesure en
temps réel du courant de court-circuit (short-circuit current) ou de la tension de circuit ouvert (open-
circuit voltage) ainsi que sur l’utilisation de courbes Courant-Tension prédéfinies. C’est sur ces
dernières qu’est lue la valeur optimale pour la tension ou le courant. Cette méthode présente deux
avantages : la rapidité de la réponse aux fluctuations et l’absence de variations (même infimes) en état
stationnaire. Cependant, ces points forts ne peuvent cacher le défaut intrinsèque de l’algorithme à
savoir l’utilisation de courbes prédéfinies que ne sauraient refléter refléter parfaitement les variations
des conditions d’exploitations et donc permettre de toujours atteindre le maximum de puissance [13].

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                     UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

            3)     Approche Incremental Conductance
        Cette approche se base sur l’observation de dP/dV. Lorsque cette dernière quantité atteint 0,
cela signifie que la puissance extraite est sur l’unique extremum de la courbe et par conséquent au
maximum de puissance extractible. Cette méthode est plus rapide que P&O mais elle présente de
mauvais résultats pour de faibles ensoleillements (très faible évolution de P sur le pas de calcul fixe d’où
des dérivées très petites et des difficultés d’interprétations) [13].

            4)     Approche Logique Floue
       Selon les termes de Zyed Zalila, professeur enseignant la logique flou à l’Université de
Technologie de Compiègne et PDG du bureau d’étude Intellitech, la théorie du flou permet « la
modélisation et le traitement rigoureux d’informations imprécises, incertaines et subjectives ». Elle permet
d’approximer des fonctions non-linéaires. C’est donc une théorie tout à fait adaptée au problème
d’optimisation que nous avons à traiter dans ce projet. Nous avons en effet à faire une fonction P
fortement non linéaire et à des capteurs qui ne peuvent avoir une précision infinitésimale.

        Lors de nos recherches bibliographiques, deux démarches ([11] et [12]) ont retenu notre
attention. Celles-ci reposent sur l’observation en temps réel de deux critères que sont l’écart E de dP/dV
par rapport à la valeur recherchée (c’est-à-dire 0) et la variation CE de cette écart. Dans chacune de ces
démarches, un convertisseur est utilisé. Ces critères après inférence (explicitée dans le schéma ci-
dessous tiré de [11]) permettent de construire une valeur D qui est le rapport cyclique du
convertisseur. Cette valeur D aboutit à la détermination de la valeur VMPPT à chaque instant.

                            Figure 15: Schéma explicatif de l'algorithme en logique floue [11]

        La fuzzification désigne le processus de détermination du degré d’appartenance à chaque
partition floue. L’inférence désigne l’utilisation des règles déclenchées par les différentes entrées
fuzzifiées. La défuzzification désigne le passage des valeurs floues de sorties à une valeur finale nette.
Ces procédés sont communs à toutes les approches de floues étudiés à l’UTC (excepté la défuzzification
qui n’est pas nécessairement utilisée). Ils ont donc servis de base pour nos travaux qui vont maintenant
être présentés.

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                      UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

     V         MPPT en logique floue, présentation du système
     Nous allons ici détailler l’algorithme MPPT flou que nous avons mis en place.

               1)      Définition des critères d’entrées
        La définition de critère pertinent a été réalisée en s’appuyant à la fois sur la recherche
bibliographique et sur l’exercice de Travaux Dirigés de SY10 intitulé « Bain de Valérie » [14].

                             c)          Ecart E

Définition :
                                                                       ,-                                   ,-
         L’écart E est défini comme étant l’écart entre                ,
                                                                          .   et la valeur recherchée , . / 0. Cette
dernière valeur correspond à l’unique extremum de la courbe1 / 23 . Cet extremum est un maximum.
Plus E est positif, plus la valeur de P croit. Inversement, plus E est négatif, plus la valeur de P décroit.
Enfin quand E tend vers 0, la valeur de P tend vers son maximum, le MPP. On peut l’assimiler à la pente
de 1 / 23 .

                                                           51          51
                                                   4. /      .  0 /    .
                                                           53          53

Partition floue :

Figure 16: Copie d'écran
  de la partition floue
définie via la fuzzy logic
   toolbox de Matlab

Avec les notations de Kaufmann, les fonctions d’appartenance sont définies comme suit :

    •    Univers du discours= [-10, 10]
    •    Décroit très fortement= (0, 0, -4,-1)
    •    Décroit fortement= (-2, -1, -0.2)
    •    Décroit= (-0.4, -0.2, 0)
    •    Stable= (-0.2, 0, 0.2)
    •    Croit= (0, 0.2, 0.4)
    •    Croit fortement= (0.2, 1, 2)
    •    Croit très fortement= (1, 4, 10, 10)

    Nous utilisons des fonctions d’appartenances de type linéaire dans la mesure où nous ne maîtrisons
pas parfaitement le sujet. Mais on pourrait très bien imaginer d’utiliser des courbes gaussiennes pour
représenter chaque sous ensemble flou. Enfin, la hauteur de chaque sous-ensemble flou est égale à 1.

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                           UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

                            d)           Variation de l’écart dE

Définition :

       La variation de l’écart dE indique dans quel sens et dans quelle proportion l’écart se modifie à
mesure que l’algorithme suit son cours. Ainsi, lorsque dE tend vers 0, le système se stabilise (mais pas
nécessairement au MPP).

                                                  54. / 4.  4.  1

Partition floue :

    Figure 17: Copie d'écran de la
  partition floue définie via la fuzzy
       logic toolbox de Matlab

Avec les notations de Kaufmann, les fonctions d’appartenance sont définies comme suit :

    •     Univers du discours= [-10, 10]
    •     --- = (-10, -10, -4, -2)
    •     -- = (-4, -2, -0.4)
    •     - = (-2, -0.4, 0)
    •     0 = (-0.4, 0, 0.4)
    •     + = (0, 0.4, 2)
    •     ++ = (0.4, 2, 4)
    •     +++ = (2, 4, 10, 10)

    De la même manière que pour E, nous avons utilisé des fonctions linéaires car celles-ci sont les plus
sûres lorsque l’on ne connaît pas exactement le comportement du sous-ensemble flou. Enfin, la hauteur
de chaque sous-ensemble flou est égale à 1.

                            e)           Définition du critère de sortie : Incrément di

Définition :

        L’incrément di correspond à la valeur d’ajustement additionnée au courant I à chaque itération
de l’algorithme. C’est-à-dire que 3. / 3.  1 6 57. Nous avons défini 7 classes d’incréments allant
du grand incrément négatif au grand incrément positif. Ces 7 classes de sorties correspondent aux 7
règles du système flou.

Remarque : Il ne faut pas confondre dI (variation du courant dans le panneau) et di (incrément).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                          UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

Partition floue :

 Figure 18: Copie d'écran de la partition
floue définie via la fuzzy logic toolbox de
                  Matlab

Avec les notations de Kaufmann, les fonctions d’appartenance sont définies comme suit :

     •    Univers du discours= [-10, 10]
     •    --- = (--0.012, -0.012, -0.0063, -0.004348)
     •    -- = (-0.004476, -0.002574, -0.000792)
     •    - = (-0.001048, -0.000732, 0)
     •    0 = (-0.0004128, 0, 0.0004128)
     •    + = (0, 0.000858, 0.001238)
     •    ++ = (0.000792, 0.00276, 0.00454)
     •    +++ = (0.004544, 0.005936, 0.012, 0.012)

    De la même manière que pour E, nous avons utilisé des fonctions linéaires car celles-ci sont les plus
sûres lorsque l’on ne connaît pas exactement le comportement du sous-ensemble flou. Enfin, la hauteur
de chaque sous-ensemble flou est égale à 1.

                2)      Fonctionnement du système flou
                               a) Schéma de fonctionnement

                               Figure 19: Copie du système flou conçu via la fuzzy logic toolbox de Matlab

Le système flou possède deux entrées (E et dE) et une sortie di. Il est à noter qu’avant utilisation le
système flou doit être appelé sur le prompt grâce à la commande fuzzymppt=readfis(‘fuzzymppt.fis’).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                                  UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

                      b)          Schéma d’inférence

Le schéma d’inférence floue est celui de Mandani-Assilian.

    •    ET9:
    •    OU9;
    •     modélisée par

On calcule le degré de déclenchement >?. / 3=>>?.  1 6 57.

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                    UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

                        e)          Architecture du système

        L’architecture sous Matlab-Simulink du système MPPT+Panneau Photovoltaïque est le suivant :

                Figure 21: Architecture du système Panneau photovoltaïque + MPPT floue sous Matlab-Simulink

        Différents points doivent être soulignés. Tout d’abord, le modèle du panneau photovoltaïque est
dans la partie supérieure du schéma. En dessous, nous avons construit le modèle de la MPPT. Comme on
peut le voir dans un premier temps, nous créons E et dE. E est déterminé à partir de la variation de P et
de I. Les deux valeurs E et dE passent ensuite par un filtre de saturation pour s’assurer que E et dE
seront bien compris dans l’univers du discours défini dans les partitions floues (il s’agit de l’intervalle
[-10,10] dans les deux cas). Les critères entrent via un multiplexeur dans le contrôleur flou. Ce dernier
produit un incrément dI à ajouter à la valeur I d’entrée. I est lui le fruit de l’accumulation de multiples
infimes dI.

        Au cours de l’élaboration de la MPPT, nous avons rencontré un problème de division par 0 dans
                       ,-
la détermination de       .    . En effet, I est nul au départ et par conséquent dI aussi. La solution choisie
                       ,
est présentée dans le diagramme suivant qui est un zoom sur le bloc « Résolution prob division par 0 »
du schéma précédent.

                    Figure 22: Zoom sur l'architecture du système pour analyser et résoudre un problème

Explication :

        Si dI=0, alors on l’élève de 0.000 000 1 (=1.10-7 A). Cette élévation infinitésimale ne nuit que
très faiblement à la précision de l’algorithme tout en permettant d’éviter le problème de division par 0.

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                      UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

        Dans la pratique, on vérifie une condition ce qui retourne une valeur binaire. Nous avons donc
été amené à ajouté un « Convert ». Ainsi quand dI = 0, la condition est vérifiée donc la sortie est 1. Celle-
ci passe dans le convertisseur qui la retransforme en nombre. Elle est alors saturée à une valeur de
0.00000011 (presque 0) et ajoutée à la valeur dI. Finalement, 53 / 0 6 0.000 000 11 A 0. D’autre part,
si dI est différent de 0 alors la sortie est 0. Comme dans l’autre cas, elle est saturée à 0.0000001 et
ajoutée à dI. Au final, nous avons 53 / 53 6 0.000 000 11 A 53.

   Une simple saturation à la sortie de dI était inenvisageable. En effet, un intervalle de saturation de
type (0.0000001 à 10000000) par exemple aurait certes permis d’éviter une division par 0 mais aurait
par la même occasion ramené toutes les valeurs négatives de dI à 0.0000001. Cela n’aurait été
absolument insatisfaisant.

    VI        Analyse comparative des résultats
     Dans ce chapitre, nous allons étudier les résultats de notre algorithme basé sur la logique floue. Ces
résultats seront comparés à ceux obtenus avec une MPPT P&O et sans MPPT. Les points traités sont :
l’ensoleillement, la stabilité de l’algorithme, l’efficacité de l’algorithme, le comportement des
entrées/sorties et le temps de réponse à une situation moyenne non variable (G=1000 W/m², T=25°C).
Enfin, nous conclurons en amenant des pistes d’améliorations.

                     1)      Ensoleillement et température considérés

                                                                              L’ensoleillement sur la journée
                                                                              étudiée est représenté sur la courbe
                                                                              ci-dessous. Il est tout à fait non
                                                                              linéaire et très variable. Il mettra
                                                                              bien à l’épreuve notre MPPT et sa
                                                                              validité.

                                                                                Figure 23: Evolution de l'ensoleillement en
                                                                                 fonction du temps au cours de la période
                                                                                                  d'étude

Parallèlement    à     l’ensoleillement,   la
température évolue elle aussi de manière non
linéaire.
  Figure 24: Evolution de la température en fonction du
          temps au cours de la période d'étude

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                      UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

               2)      Stabilité de l’algorithme (MPPT Flou vs P&O)
      Dans cette partie, nous allons comparer la réponse des algorithmes MPPT Flou et de P&O face la
même situation d’ensoleillement présenté ci-avant.

                                  Figure 25: Réponse (P= f(t)) des algorithmes P&O et logique floue

       De prime abord, les deux MPPT se comportent de la même manière. Pour mieux comprendre, il
faut donc zoomer sur une zone quelconque de la courbe. Ici, ce sera sur la zone figuré par le
quadrilatère rouge.

Figure 26: Zoom (1) sur la réponse (P= f(t)) des
       algorithmes P&O et logique floue

Ce premier zoom montre que les oscillations autour de la courbe moyenne sont bien différentes. Elles
sont plus amples dans le cas P&O que celui de la MPPT Flou. La modularité de la logique floue (c’est-à-
dire la plus grande plage de valeurs d’incréments, ici [-0.012, 0.012] A) explique cette différence
d’amplitude. On peut en déduire qu’elle permet aussi d’accroître la précision de la réponse. En effet,
P&O ne propose que trois valeurs d’incréments 0, α et –α (ici α=0.01 A).

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                           UV BA04, UTC, A09
Panneau photovoltaïque et algorithme MPPT à base de logique floue

En zoomant au maximum sur la zone, il devient plus évident que l’amplitude de variation dans le cas de
p&O est largement plus grande La lecture graphique fournit une estimation correcte de cette
différence : 0.01A pour la MPPT Flou contre 0.02A pour la MPPT P&O.

 Figure 27: Zoom (2) sur la réponse (P= f(t))
    des algorithmes P&O et logique floue

On peut imaginer qu’en réduisant la valeur de l’incrément α de P&O. Nous aurions obtenu une
amplitude réduite par la même occasion.

On en conclu que la MPPT Flou est plus stable autour de la courbe moyenne que la MPPT P&O.

               3)     Efficacité de l’algorithme
                             a) MPPT Flou/ MPPT P&O

                                                                                   De la même manière que pour la
                                                                                   stabilité des algorithmes, il
                                                                                   n’apparait pas de différence
                                                                                   notable entre P&O et MPPT Flou.
                                                                                   Toutefois, nous allons voir que le
                                                                                   système équipé d’une MPPT basé
                                                                                   sur     la   logique     récupère
                                                                                   légèrement plus d’énergie sur la
                                                                                   journée d’étude.

                                                                                   Pour cela, concentrons nous sur
                                                                                   deux zones : une en début de
                                                                                   journée (carré violet), une autre
                                                                                   en fin de journée (carré rouge).
                                                                                         Figure 28: Réponse (E= f(t)) des
                                                                                        algorithmes P&O et logique floue

Céline BERNARD, Carolina SEBRAO – OLIVEIRA, Bernard LAVAL, Clément VAUDOUER                       UV BA04, UTC, A09
Vous pouvez aussi lire