Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
Master 2 - Parcours Planétologie Ile de France http://planeto.geol.u-psud.fr/master Cours 1 Topographie des planètes Frédéric Schmidt - frederic.schmidt@u-psud.fr http://planeto.geol.u-psud.fr/Frederic-Schmidt
Plan • Définitions • Mesure de la topographie • Principe, incertitudes • Quelles interprétations planétologiques ?
Plan • Définitions • Mesure de la topographie • Principe, incertitudes • Quelles interprétations planétologiques ?
Forme théorique d’une planète Clairaut (XVIIIème siècle) • Equilibre hydrostatique d’une sphère en rotation • forme • rotation • inertie
Géoïde Terre Forme d’une planète ? • Surface de potentiel de référence • force de gravité • force centrifuge Mars • Description : • variation du rayon à chaque point • variation de gravité à rayon constant (ou sur une ellipsoïde)
Géoïde Terre Forme d’une planète ? • Surface de potentiel de référence • force de gravité • force centrifuge Mars • Description : • variation du rayon à chaque point • variation de gravité à rayon constant (ou sur une ellipsoïde)
Géoïde terrestre Définition : • surface moyenne des océans (interface entre deux fluides à l’équilibre hydrostatique) représentation avec exagération verticale x 10 000
Géoïde terrestre Définition : • surface moyenne des océans (interface entre deux fluides à l’équilibre hydrostatique) représentation avec exagération verticale x 10 000
Géoïde Martien : Areoïde Définition : • Ancienne : surface de 6.1 Mbar (proche du point triple de l’eau) MAIS variation temporelle ! • MOLA : surface de LEMOINE ET AL.: AN IMPROVED MARS GRAVITY MODEL 23, 0ø 0ø potentiel équatorial moyen (rayon 3396 km) Smith, D. E. & Zuber, M. T., The relationship between MOLA northern hemisphere topography and the 6.1-Mbar atmospheric pressure surface of Mars, Geophys. Res. Lett., AGU, 1998, 25, 4397-4400 Lemoine, F. G.; Smith, D. E.; Rowlands, D. D.; Zuber, M. T.; Neumann, G. A.; Chinn, D. S. & Pavlis, D. E., An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor, J. Geophys. Res., AGU, 2001, 106, 23359-23376 I• mGal -5OO 0 5OO IOO0 GMM-2B to degree 60
Ellipse de référence / Datum / Système géodésique Ellipse ajustant la forme (géoïde) à l’échelle globale/locale
Altitude ATTENTION plusieurs définition !? H : altitude http://www.geod.nrcan.gc.ca/hm/images/fig1_heights_f.jpg
Représentation cartographique Coordonnées ? Projection sur un plan
Harmoniques sphériques • Projection des données dans une nouvelle base (orthogonale, normée) • Equivalent à la Transformé de Fourier : spatiale, sphérique
Harmoniques sphériques • Degré 1 • Degré 2 • Degré 36 • ...
Filtrage par harmonique sphérique • Reconstruction de la topographie terrestre Degré 1 Degré 1 à 6 Degré 1 à 36
Plan • Définitions • Mesure de la topographie • Principe, incertitudes • Quelles interprétations planétologiques ?
Mesure de topographie Comment calculer l’altitude ?
Mesure de topographie Comment calculer l’altitude ? • Mesure du champs de gravité par des gravimètres (création du géoïde) • Mesure de la topographie (forme de la planète) • Ajustement de l’ellipsoïde de référence (nécessaire pour la cartographie) • Calcul de l’altitude et de la coordonnée géographique
Mesure de topographie Comment calculer l’altitude ? • Mesure du géoïde par des gravimètres • Mesure de la topographie (forme de la planète) • Ajustement de l’ellipsoïde de référence • Calcul de l’altitude
Mesure de topographie • Trajet aller-retour d’une onde : • radar, laser • Stéréographie • imagerie visible, radar • Photoclinométrie • imagerie visible • Limitations ? Incertitude ?
Exemple d’instruments • •LaserMars : MOLA (Mars Global Surveyor, 1999) • Lune : LOLA (Lunar Reconnaissance Orbiter, 2009) • Mercure : MLA (Messenger, 2011), BELA (Bepi Columbo, 2020 ?) • Radar • Venus : radar experiment (Pioneer Venus, 1980), SAR (Magellan, 1990) • Mars : MARSIS (Mars Express, 2003), SHARAD (Mars Reconnaissace Orbiter, 2005) • Satellites saturniens (Titan, Encelade,...) : RADAR (Cassini, 2004) • Stéréographie • Mars : HiRISE (Mars Reconnaissace Orbiter, 2005) • Mars : HRSC (Mars Express, 2004) • Satellites galiléens: PhotoPolarimeter/Radiometer (Galileo, 1995) • Photoclinométrie • Mars : HiRISE (Mars Reconnaissace Orbiter, 2005) • Satellites galiléens: PhotoPolarimeter/Radiometer (Galileo, 1995)
Principe : aller-retour • Mesure du temps d’aller retour : t Détecteur • Vitesse de propagation connu : v • Positionnement du satellite connu • distance : d=v.t/2 • Laser et Radar • visée Nadir surface
Principe : aller-retour • Mesure du temps d’aller retour : t Détecteur • Vitesse de propagation connu : v • Positionnement du satellite connu • distance : d=v.t/2 • Laser et Radar • visée Nadir surface
Zuber et al. (1992) and Abshire et al. (2000). We advise the filt reader to refer to these two sources for more detail. tio The MOLA laser operates at a wavelength of 1.064 µm. Pulses Principe : aller-retour ma are emitted with a repetition rate of 10 Hz. A ranging schematic (Ta is shown in Fig. 1. The basic properties of the laser and the op of gre If Mesure : • temps d’aller-retour • dispersion de l’onde • Idem radar De et laser Ch Te FIG. 1. Laser ranging schematic. Range to the surface R = c!T /2; !T = Fo Tr − T0 ; T0 —transmitted pulse time; Tr —received time; E 0 —transmitted en- Pro ergy; Er —received energy. Detector can only register incoming photons when the range gate is open. a
Perturbations Laser 198 IVANOV AND MUHLEMAN • Incertitude de position du satellite • Présence de nuage FIG. 7. Samples of cloud formations for the south polar region. Horizontal scale is equal to 2050 km. Vertical exaggeration is about 1:50. These four graphs illustrate the most extensive cloud formations encountered during the first south winter. Channel 1 returns are marked with black crosses; channel 4 returns are marked with blue diamonds. Clusters of channel 1 clouds in the latitude band from 80◦ S to 70◦ S are evident in orbits 1640, 1654, 10075. Clouds located over the pole are similar to the North polar cloud formations in Fig. 5. In orbit 1640, a channel 4 cloud formation is observed inside a channel 1 formation. composed of CO2 ice, but weIvanov, A. B. & Muhleman, D. O., Cloud Reflection Observations: Results from can’t rule out water ice as one of Most of the cloud echoes are detected during the polar night. the Mars Orbiter Laser Altimeter, Icarus, 2001, 154, 190-206 the possible components. We think that we observe nighttime clouds only, because the tem- perature drops low enough to permit condensation of detectable clouds. Background radiation from Mars would not preclude 3.4. North and South Comparison and Analysis MOLA from seeing clouds, should there be any (such as aphe- In the following section we summarize and compare our lion water ice clouds, that greatly attenuate MOLA’s received
Forma- tends from "220°E to "300°E and from curves northeastward in a “scorpion tail” pat- Downloaded from www.sciencemag.org on Nove Borealis "50°S to "20°N and spans about 107 km2 in tern. This arcuate ridge bounds Solis Planum, d small area. The highest portion of the southern rise a plateau within the southern rise. The ridge Exemple : Mars (MOLA) mentary contains the Tharsis Montes (Ascraeus, Pavo- contains an abundance of heavily cratered r these nis, and Arsia). Eastward of the highest ter- Noachian material that has presumably es- achian- rain but still elevated are the ridged plains of caped resurfacing by younger Tharsis volca- flat in- Lunae Planum (Fig. 2). The smaller northern nic flows because of its high elevation. It has Hespe- rise is superposed on the lowlands and covers been suggested (25) that the termination of Précision : • verticale : 1m • horizontale : 300m Smith, D. E.; Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Head, J. W.; Garvin, J. B.; Banerdt, W. B.; Muhleman, D. O.; Pettengill, G. H.; Neumann, G. A.; Lemoine, F. G.; Abshire, J. B.; Aharonson, O.; Brown, D. C.; Hauck, S. A.; Ivanov, A. B.; McGovern, P. J.; Zwally, H. J. & Duxbury, T. C., The Global Topography of Mars and Implications for Surface Evolution, Science, 1999, 284, 1495-+ 28 MAY 1999 VOL 284 SCIENCE www.sciencemag.org
as the transmitter frequency exceeds the local plasma fre- nd By sequentially stepping the transmitter frequency after directly. However, the plasma frequency can be determined ns eachquency, electromagnetic transmit-receive cycle, thewave timepropagation can the delay, and hence start to from the harmonic spacing and is fp(local) = 0.09 MHz. At Perturbations Radar an occur. range Remote to the echoes reflection point,from can bethedetermined ionosphere as can then be a func- somewhat higher frequencies a very strong ionospheric to tiondetected, starting of frequency. initially A plot of theattime zerodelay time asdelay, and then a function of with echo trace can be seen extending from about 0.6 to gs a steadily frequency, increasing Dt(f), can thentime be delay made,asasthe range tointhe illustrated thereflec- 2 MHz, with time delays ranging from about 2.5 to nts tion point increases. These echoes produce the trace labeled 3.5 ms. The echo trace ends in a well-defined cusp at nd ‘‘ionospheric echo’’ in Fig. 1. As the transmitter frequency les approaches the maximum plasma frequency in the iono- sphere, fp(max), the time delay increases rapidly, forming an the left-hand branch of the feature labeled ‘‘cusp’’. The he cusp occurs because the group velocity goes to zero over n- a rapidly increasing path length as the frequency n- approaches fp(max). As soon as the transmitter frequency he exceeds fp(max) the pulse can pass through the ionosphere of to the surface of the planet, where it reflects and returns to þ . the spacecraft, forming the right-hand branch of the cusp. so By measuring the time delay as a function of frequency, les the function Dt(f) on the left-hand side of Eq. (1) can be res determined. To obtain the electron density as a function as, of altitude, the problem is then to solve for the function nd fp(z) inside the integral. The solution of this integral equa- els tion, called Abel’s equation, is a classical problem in math- he mic ematical physics (Whittaker and Watson, 1927), and has a nd formal solution (Budden, 1961) given by of Z 2 p=2 de zðfp Þ ¼ cDtðfp sin aÞda; ð2Þ p a0 ars Fig. 2. A color-coded ionogram showing the echo intensity as a function re- where sin a = fp(z)/f and sin a0 = fp(zsc)/fp(max). Since time of the time delay, Dt, and frequency, f. To provide a rough estimate of the aft range to the reflection point, the scale on the right gives the apparent delay measurements must be made at a discrete set of fre- range, which is defined as cDt/2, where c is the speed of light. The white ag- quencies, to apply this equation the integral must be line shows the time delay computed from Eq. (1) using the dispersion- mes Fig.converted to shows 1. The top panel a discrete sum ofprofile a representative integrals. The integration of the electron plasma corrected plasma frequency profile shown in Fig. 3. will frequency, fp, in the Martian ionosphere, and the bottom panel shows the in corresponding ionogram, which is a plot of the time delay, Dt, for a an sounder pulse of frequency, f, to reflect from the ionosphere and return to Gurnett, D.; Huff, R.; Morgan, D.; Persoon, A.; Averkamp, T.; Kirchner, D.; Duru, F.; the spacecraft. Akalin, F.; Kopf, A.; Nielsen, E.; Safaeinili, A.; Plaut, J. & Picardi, G., An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft, Advances in Space Research, 2008, 41, 1335-1346
5.6 Angle d'incidence Perturbations : réflectance L'angle d'incidence décrit la relation entre l'illumination du radar et la surface d Plus concrètement, c'est l'angle entre le faisceau du radar et l'objet ciblé. L'angle d'incidence détermine l'apparence de la cible sur une image. Un angle d'incidence local peut être déterminé pour chaque pixel d'une image. L surfaces retournant un signal fort et qui sont brillantes sur l'image radar peuvent retourner présense d'arbres, rochers, édifices et autres structures font varier l'angle d'incide un signal faible dans la portion du visible et de l'infrarouge du spectre électromagnétique local. Ceci génère des variations de l'intensité du pixel. et apparaître sombre sur une photographie, une image de Landsat ou de SPOT. Rétro-diffusion de l’énergie dépends de : Rugosité de surface La rugosité de surface influe sur la réflectivité du rayonnement des hyperfréquences. Les surfaces lisses et horizontales, qui réfléchissent presque toute l'énergie incidente en • angle d’incidence direction opposée au radar, sont appelées réflecteurs spéculaires. Ces surfaces, comme l'eau calme ou les routes pavées, apparaissent foncées sur les images radar. • rugosité • matériaux (constantes diélectrique) variations de l'intensité du pixel Les angles d'incidence des satellites varient moins que les angles d'incidence de A formes = antenne; h = variations aéroportées, de hauteur car leur deest altitude beaucoup =plus la surface; longueur d'onde élevée. Cecidu radar.une donne Surface de rugosité intermédiaire; réflecteur moyen; retour d'une petite partie du illumination plus uniforme sur les images spatiales que sur les images aériennes. signal. rugosité de surface influe sur la réflectivité A = antenne; h = variations de hauteur de la surface; = longueur d'onde du radar. Surface lisse; réflecteur presque parfait (spéculaire); pas de retour de signal. A = antenne; h = variations de hauteur de la surface; = longueur d'ondehdu= radar. A = antenne; variations de hauteur de la surface; = longueur d'onde du radar. Surface de rugosité intermédiaire; réflecteur moyen; retour d'une Surface departie petite du importante; rugosité signal. réflecteur diffus; retour d'une grande partie du signal. La rugosité de surface est fonction de la longueur d'onde et de l'angle d'incidence du
Ices, Oceans, and Fire: Satellites of the Outer Solar System (2007) Radargramme Titan occasional relief of >500 m. Perhaps, as shown in Figs. 1 and 2, the most intriguing feature of the altime- ter echoes is the wide range of “depths” seen. R Scien 441. fan, 2007 • RADAR - Cassini 312 A the J • Diamètre de Tech Titan : 2575 km • Résolution au sol entre 60 km et 25 km Figure 1: Radargram of T19 altimetry : Red repre- sents strongest signal while the width is related to the surface properties such as material and slope. The spacecraft altitude varies from about 4000 km on the left to 10,000 on the right.
Sources d’incertitudes : aller/retour • Incertitude de géométrie (position du satellite, direction de visée) • Perturbation de l’onde (nuages, ionosphère,...) • Réflexion en surface (topographie, matériaux)
Principe : stéréoscopie • Paire d’image • Points d’appui commun • Parallaxe
Principe : stéréoscopie Parallaxe : Pa = xa - xa' Parallaxe : P = xPP2’ - xPP1=xPP2 - xPP1’ Distance entre les points Nadir: B Altitude du détecteur : H Distance focale de la lentille : f Hauteur en A : ha = H - (B.f)/Pa ∆hab=H.(Pa-Pb)/(P+Pa-Pb)
Exemple Tête de Mars observé par MOC Paire stéréoscopique Anaglyphe Modèle 3d
Exemple • HRSC, Mars Express • résolution altitude relative < 300 m 9 canaux Promethei Terra, hourglass craters
Incertitude : stéréoscopie • Densité de point d’appui (forme du terrain) • Incertitude de géométrie • Perturbation de l’onde (nuages,...)
1941ApJ....93..403M Principe : photoclinométrie • Shape-from-shading • Hypothèses: milieux homogène réflectance connu pA • Energie en O : iA Trajet LAO : EA=L.cos(iA).R(LA,AO) Trajet LBO : EB=L.cos(iB). R(LB,BO) φA i φA ≃ φB pA= i+ iA pB= i+ iB iB φ B pB M. Minnaert, The reciprocity Principle in Lunar Photometry , 1941 ApJ 93, 403.
Principe : φ photoclinométrie • Principe R(XX,YY)=R(φ) dépend que de φ pour les matériaux granulaires EA/EB= cos(iA)/cos(iB). R(φA)/R(φB), φA ≃ φB EA/EB= cos(iA)/cos(iB) Fonction de phase de la Lune Reflectance R(φ) Angle de phase φ
Incertitudes : photoclinométrie • Incertitude de géométrie • Hétérogénéité de surface • Réflectance bidirectionnelle (glaces, ...) • Perturbation de l’onde (nuages,...)
Comparaison entre techniques • Estimation des incertitudes sur des exemples de la littérature scientifique
Stéréo vs Laser BILLS AND NEREM: MARS TOPOGRAPHY 32,917 BILLS AND NEREM: MARS TOPOGRAPHY 3O If the USGS array were Stéréo white noise,the averagep be very near zero. Inste persist out to angular s 2O shownin Figure 3 are som tions to which we will retu As a further illustration we plot the latitudinal an difference array in Figur 10 point which is also quite much more variation in in the longitudinal direc variations are nearly !0 ti nal variations and are ver equator. The Earth-based rada A of the contributing sourc -10 • I i were restricted to low-la -10 0 10 20 30 Earth point on Mars nev MOLA elevation (km) by more than the sum o the mutual inclination o Laser Figure 1. Mars topography comparison. Simple scatterplot of 1øx 1ø grid valuesof MOLA versusUSGS. (1.6ø). In contrast,the lo data is quite uniform. It pente=0,94 of Hellas, around Elysium, and at Olympus Mons. The largest scale features, however, are prominent bands at MOLA interval. difference 25ø is generally smaller th We attribute in the th fixed latitudes. It is quite clear that in addition to local the radar data. and regionaldifferencesthe MOLA and USGS topogra- Mars phy grids differ in terms of their grosslatitudinal struc- Spectral Domain C tures. We shall return to this topic several times in an It is also illustrative attempt to understand its nature and source. USGS Mars topography Figure 2 illustrates the differenceplotted as a func- tive sphericalharmonicex tion of the MOLA heights, as was done in Figure 1. clearer appreciationof th Figure 2 vividly illustrates the fact that there are some quite substantial local differences.The regressionslope Bills, B. G. & Nerem, is-0.051 R. S., + 0.001. ThatMars topography: is, on average,theLessons differencelearned be- from lO spatial B and spectral tween domain MOLA comparisons of MarsisOrbiter and USGS elevations largelyLaser Altimeter and U.S. indepen- Geological Survey data, J. Geophys. Res., American Geophysical dent of elevation but decreasesslightly with incre.asing 8 Union, Plate 1. Marstopography grids.(a) U.S.Geological surveygirdof topographic heights 2001, 106, - elevation. represented bycolorvariations. (b) MarsObserver LaserAltimetergridof topographic Careful examination of the differencegrid in Plate 6 heightsrepresentedby colorvariations. 2 clearly indicates that the differencesare not entirely 4 random and are not isotropic. As an illustration of these two points (nonrandomand anisotropic)we showthe 2 covariancefunction of the differencearray in Figure 3. o The covarianceof spherical scalar function fat angu- lar offset 7 is the global mean value of the product of -2 - the function / at two locations separated by angular
Radar vs Radar-Stéréo Venus HERRICK AND SHARPTON: Radar altimétrique Paire d’images TOPOGRAPHY OF VENUSIAN gain en résolution spatiale IMPACT Points d'appui DEM stéréo CRATERS Herrick, R. R. & Sharpton, V. L., Implications from stereo-derived topography of Venusian impact craters, J. Geophys. Res., American Geophysical Union, 2000, 105, 20245-20262 20,249
power spectrum, of the topography, may constrain how the than the stereo topography, as expected. Table 1 summarizes topography is being modified [e.g. 2,3]. Finally, it is important the characteristics of the six areas investigated. Photoclinométrie vs stéréoscopie to quantify short-wavelength topographic roughness to design radar instrument characteristics [4] or understand hazards to data set ∆x RMS dev.(100) dev.(1) spacecraft landers. m m m m e86-32 Z 32 106.2 7.7 0.21 ediss Z 55 87.2 8.5 0.27 eplains Z 21 51.4 7.1 0.22 erhad Z 65 75.3 5.6 0.20 etyre-33 Z 33 55.9 15.9 1.5 stéréo manan-80 Z 80 73.9 14.9 1.2 Satellite galliléens (Io, Table 1: ‘Z’ denotes a stereo data set. ∆x is the pixel size; Europe, Ganymède, RMS and dev. are the RMS height and the RMS deviation as defined by [9]. The RMS deviation at the specified wavelength Callisto, ...) : (100 m and 1 m, respectively) is derived by extrapolation from the fitted roughness plots shown in Fig. 5. PC Pas d’autre moyen que stéréoscopique actuellement ! Résolution spatiale meilleure pour la photoclinométrie ! stéréo PC Nimmo, F. & Schenk, P. M., Stereo and Photoclinometric Comparisons and Topographic Roughness of Europa, Lunar and Planetary Institute Science Conference Abstracts, 2008, 39, 1464-+ Figure 1: Topography for Erhad (a-PC b-stereo) and Ediss (c- PC d-stereo) regions of Europa. Colour scale (in m) applies to Figure 2: a) Coherence between PC and S topography as a
Plan • Définitions • Mesure de la topographie • Principe, incertitudes • Quelles interprétations planétologiques ?
Interprétations • Comment comparer les altitudes ? • Hypsométrie • Pentes • loi d’échelle
Interprétations • Comment comparer les altitudes ? • Hypsométrie • Pentes • Loi d’échelle
Comparaison Venus, Mars, Terre • Etude rapide de deux publications Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, Characteristics on Venus and Earth, J. Geophys. Res., American and physical models, Journal of Geophysical Research, 2001, 106, Geophysical Union, 1985, 90, 3733-3740 23723-23736 • Questions: • Qu’est-ce qu’un hypsogramme ? • Analyser les hyspogrammes des trois planètes
Vénus Rayon équatorial Terre Rayon équatorial Mars Rayon équatorial 6 051,8 km 6 378,137 km 3 402,45 km (0,95 Terre) (0,533 Terre) Rayon polaire Rayon polaire Rayon polaire 6 051,8 km 6 356,7523142 km 3 377,4 km (0,95 Terre) (0,533 Terre) Périmètre équatorial Périmètre équatorial Périmètre équatorial 38 025 km 40 075,017 km 21 344 km Superficie Superficie Superficie 4,60×108 km² 510 067 420 km² 1,448×108 km² (0,902 Terre) (0,284 Terre) Volume Volume Volume 9,28×1011 km³ 1,08321×1012 km³ 1,638×1011 km³ (0,857 Terre) (0,151 Terre) Comparaison Masse Masse Masse 4,8685×1024 kg 5,9736×1024 kg 6,4185×1023 kg (0,815 Terre) (0,107 Terre) Masse volumique moyenne Masse volumique moyenne Masse volumique moyenne 5,204×103 kg/m³ 5,515×103 kg/m³ 3,934×103 kg/m³ Gravité à la surface Gravité à la surface Gravité à la surface physique 8,87 m/s² 9,780 m/s² 3,69 m/s² (0,904 g) (0,99732 g) (0,376 g) Vitesse de libération Vitesse de libération Vitesse de libération 10,361 km/s 11,186 km/s 5,027 km/s Période de rotation Période de rotation Période de rotation (jour sidéral) (jour sidéral) (jour sidéral) (rétrograde) 0,99726949 d 1,025957 d 243,0185 d (23 h 56 min 4,084 s) (24,622962 h) Vitesse de rotation Vitesse de rotation Vitesse de rotation (à lʼéquateur) (à lʼéquateur) (à lʼéquateur) 6,52 km/h 1 674,364 km/h 868,220 km/h Inclinaison de lʼaxe Inclinaison de lʼaxe Inclinaison de lʼaxe -2,64° 23,4392° 25,19° Albédo moyen Albédo moyen Albédo moyen 0,65 0,367 0,15 Température de surface Température de surface Température de surface % •% Min. : 719 K (446°C) % •% Min. : 184,15 K = -89°C % •% Min. : 133 K = -140 °C % •% Moy. : 737 K (464°C) % •% Moy. : 288 K = 15 °C % •% Moy. : 210 K = -63 °C % •% Max. : 763 K (490°C) % •% Max. : 333 K = 60 °C % •% Max. : 293 K = 20°C Pression atmosphérique Pression atmosphérique Pression atmosphérique 9,3219×106 Pa 101 325 Pa 0,7-0,9×103 Pa (100 Terre) (0.001 Terre)
the MOLA topographic profile data (18). topographic rise (10). However, Fig. 2 (see long-standing debate over the dominant con- Downloaded from www.sciencemag.org on November 23, 20 Most of the northern lowlands is composed of also Fig. 6) shows that topographically Thar- tributors to the high elevations of the Tharsis the Late Hesperian–aged (19) Vastitas Borea- sis actually consists of two broad rises. The region. A prominent ridge (containing Clari- Comparaison Mars/Venus/Terre SHARPTON AND HEAD: lis Formation, IMPLICATIONS OF REGIONAL SLOPE DISTRIBUTION--VENUS AND EARTHwhich is flat and 7549 smooth (Fig. larger southern rise is superposed on the tas Fossae; Fig. 2) extends southward from 2), even at a scale as short as 300 m (Fig. 3). highlands as a quasi-circular feature that ex- the region of the Tharsis Montes, and then The Amazonian-aged (19) Arcadia Forma- tends from "220°E to "300°E and from curves northeastward in a “scorpion tail” pat- tion, which overlies the Vastitas Borealis "50°S to "20°N and spans about 107 km2 in tern. This arcuate ridge bounds Solis Planum, Formation, is also smooth at large and small area. The highest portion of the southern rise a plateau within the southern rise. The ridge scales, consistent with either a sedimentary contains the Tharsis Montes (Ascraeus, Pavo- contains an abundance of heavily cratered (4, 20) or volcanic (21) origin for these nis, and Arsia). Eastward of the highest ter- Noachian material that has presumably es- plains. In the southern hemisphere Noachian- rain but still elevated are the ridged plains of caped resurfacing by younger Tharsis volca- aged (19) ridged plains form locally flat in- Lunae Planum (Fig. 2). The smaller northern nic flows because of its high elevation. It has I I tercrater deposits, whereas younger Hespe- rise is superposed on the lowlands and covers been suggested (25) that the termination of Fig. 2. Maps of the global topography of Mars. The projections are Mercator to 70° latitude and stereographic at the poles with the south pole at left and north pole at right. Note the elevation difference between the northern and southern hemispheres. The Tharsis vol- cano-tectonic province is centered near the equator in the longitude range 220°E to 300°E and contains the vast east-west trending Valles Marineris canyon system and several major vol- canic shields including Olympus Mons (18°N, 225°E), Alba Patera (42°N, 252°E), Ascraeus Mons (12°N, 248°E), Pavonis Mons (0°, 247°E), and Arsia Mons (9°S, 239°E). Regions and struc- o 180 tures discussed in the text include Solis ?70 Planum (25°S, 270°E), Lunae Planum I (10°N, 290°E), and Claritas Fossae It (30°S, 255°E). Major impact basins in- clude Hellas (45°S, 70°E), Argyre (50°S, 320°E), Isidis (12°N, 88°E), and Utopia (45°N, 110°E). This analysis uses an areocentric coordinate convention with i, east longitude positive. Note that color scale saturates at elevations above 8 km. ß t% ß ß ß ß •.•.' . ,, dilli' M J ' I I t;;3 .5 Z., B " E S Plate 1. (Top) Regionalslopemap of earth depictingthe maximumslopemeasured1496 over 3ø by 3ø regions.The rangeof 28 MAY 1999 VOL 284 SCIENCE www.sciencemag.org regional slope valuesfor earth, measuredat this scale,extendsfrom 0.0ø to 2.4ø. Standard error associatedwith slope calculationsis 0.035ø [Sharptonand Head, 1985]. Each grid cell representsone degreeof latitude and one degree of longitude (approximately 111.3 km at the equator). For regional slope less than 0.5ø, each map color representsa 0.1ø slope increment; larger slope values are color-codedin 0.5ø increments(see color bar). (Bottom) Regional slope map of Venus.The format, resolution,projection,and color scaleare equivalentto that of the top part. The range of regional Smith, D. E.; Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Head, J. W.; Garvin, slopeson Venusextendsfrom 0.0ø to 2.4ø. At the equator,one degreeof latitude or longitudeequalsapproximately105.6 km. J. B.; Banerdt, W. B.; Muhleman, D. O.; Pettengill, G. H.; Neumann, G. A.; Lemoine, F. G.; Abshire, J. B.; Aharonson, O.; Brown, D. C.; Hauck, S. A.; Sharpton, V. L. & Head, James W., I., Ivanov, A. B.; McGovern, P. J.; Zwally, H. J. & Duxbury, T. C. Analysis of Regional Slope Characteristics on The Global Topography of Mars and Implications for Surface Evolution Venus and Earth, J. Geophys. Res., American Science, 1999, 284, 1495-+ Geophysical Union, 1985, 90, 3733-3740
Comparaison topographie • Hypsométrie = “mesure de la topographie” • Distribution d’altitude Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical models, Journal of Geophysical Research, 2001, 106, 23723-23736
0.8 ,, [ .... [ .... [ .... [ .... arth 0.6 0.4 0.2 0.0 i ß i I i i -5 -2.5 0 3.5 5 p 0.8 :-' ' ' I .... I .... I .... I .... I .... s Hypsométrie q Unloaded 0.6 s -- arth - n _ _ 0.2 _ w 0.0 , I I [ I. ] I •/Y•/•/'41 ] I i• i , i ] , i i! V -5 -2.5 0 2.5 5 a 0.8 V t Venus V 0 • 0.4 t p c• 0.2 f i 0 2.5 5 7.5 10 t Elevation, km Fig. 2. Differential hypsogramsfor the three topographic data e setsusedin this analysis.All three data setsare of equivalentspatial Sharpton, V. L. & Head, James W., I., and vertical resolution. Each plot illustrates the frequency of oc- e Analysis of Regional Slope Characteristics on Venus and Earth, J. Geophys. Res., American currenceof surfaceelevationsgroupedin 100-m elevationincrements. V Geophysical Union, 1985, 90, 3733-3740 For both terrestrial cases, 0.0-km elevation refers to sea level; for a Venus,elevationsare referencedto a planetary radius of 6051.0 km. c o e t
Dichotomie martienne ? • Nord • Sud • Faiblement cratérisée • Fortement cratérisée • Jeune • Agé • Faible altitude • Altitude élevée • Mécanisme interne : convection à degrée un • Océan magmatique : convection à degrée un • Un/plusieurs impacts géants
Interprétations • Comment comparer les altitudes ? • Hypsométrie • Pentes • Loi d’échelle
Comparaison Venus, Mars, Terre • Etude rapide de deux publications Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars' Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, Characteristics on Venus and Earth, J. Geophys. Res., American and physical models, Journal of Geophysical Research, 2001, 106, Geophysical Union, 1985, 90, 3733-3740 23723-23736 • Questions: • Analyser les pentes des trois planètes • Quelles sont les implications sur les mécanismes externes/internes ?
ations increase systematicallywith elevation and equal or d Venus vs Terre exceedthe mean slopevaluesabove about 4.5 km. a The specificboundariesof the major physiographicprov- d inces of Venus [Masursky et al., 1980] do not appear to be in tw 3736 SHARPTONAND HEAD: REGIONAL SLOPES--VENUSAND EARTH s el Venus Mean Slope Earth Mean Slope m Ear[h Unloaded Mean Slope 0 o.a I .... I .... I .... I ' 't o.• ''' I .... I .... I .... I .... I"' Tibetan z high • x continental Plateau re highland plateaus A
Venus,elevationsare referencedto a planetary radius of 6051.0 km. curves' Venus has a significantlylarger percentage(66 + 1%) of its total surface within this interval than does the unloaded earth (47 + 1%). It is only for slopesgreater than about 0.3ø Comparaison pente that the differences between the Venus and earth distributions The frequencydistribution of regional slopeson Venus and earth are broadly similar, but they show wide variation in are lessenedslightly from 8 + 1% (loaded)to 6 + 1% (unload- detail. ed). In order to interpretthe geologicalsignificance of these The modal regionalslopevalue for the earth curve is 0.0ø, data, information on the relationshipof slopesand elevations is requiredso that slopescan be related to geologicand geo- morphologicprovinces. Regional Slope Frequency Correlation of Mean Slope and Elevation _ The relation between regional slope values and elevations can be establishedby calculating the mean slope value for 30 '. Unloaded Earth _ each 100-m elevation interval and displaying this together _ Earth \ - _ _ with the standard deviation associatedwith each mean slope value. On Venus there is a distinct positive correlation be- • 20 - \\•. ß Venus - _ tween mean slope and altitude (Figure 4). Lowest elevations (-2.0 to -1.5 km) are characterizedby relativelyhigh mean _ slopes,which are stronglyinfluencedby the presenceof linear, steep-sidedtroughs(chasmata)in and around Aphrodite Terra 10 -- and Beta Regio [Schaber, 1982; Campbellet al., 1984]. This zone is followed by an elevation range characterizedby con- stant regional slope (about 0.1ø) extending to elevations of approximately0.3 km. From 0.3 to 3.5 km the regionalslope _ increasesconsistentlywith elevation. Above 3.5 km, mean re- gional slopevarieswidely with elevation,but a distinctdepres- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 sion in slopeis apparentbetween3.5 and 5.0 km correspond- Slope, degrees ing to high plateau regions within westernAphrodite Terra, Fig. 3. Regional slope frequency diagram for the three topo- Lakshmi Planum, and eastern Ishtar Terra. For elevations graphic data sets used in this analysis.Each plot illustrates the fre- above 4.5 km the mean slopesare extremelyhigh and highly quency of occurrenceof regional slopeswith data grouped such that the first interval, plotted at 0.0ø, includesregional slopesin the range variable, reflecting the mountainous terrain characteristicof of 0.0ø-0.07ø' all other intervalsare 0.035ø wide and are plotted at the theseelevations.Standard deviations of the mean slope values minimum slopevalue.Seetext and appendixfor details. are only slightly lower than the slope value itself, suggesting Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars' Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, Characteristics on Venus and Earth, J. Geophys. Res., American and physical models, Journal of Geophysical Research, 2001, 106, Geophysical Union, 1985, 90, 3733-3740 23723-23736
Venus,elevationsare referencedto a planetary radius of 6051.0 km. curves' Venus has a significantlylarger percentage(66 + 1%) of its total surface within this interval than does the unloaded earth (47 + 1%). It is only for slopesgreater than about 0.3ø Comparaison pente that the differences between the Venus and earth distributions The frequencydistribution of regional slopeson Venus and earth are broadly similar, but they show wide variation in are lessenedslightly from 8 + 1% (loaded)to 6 + 1% (unload- detail. ed). In order to interpretthe geologicalsignificance of these The modal regionalslopevalue for the earth curve is 0.0ø, data, information on the relationshipof slopesand elevations is requiredso that slopescan be related to geologicand geo- morphologicprovinces. Regional Slope Frequency Correlation of Mean Slope and Elevation _ The relation between regional slope values and elevations can be establishedby calculating the mean slope value for 30 '. Unloaded Earth _ each 100-m elevation interval and displaying this together _ Earth \ - _ _ with the standard deviation associatedwith each mean slope value. On Venus there is a distinct positive correlation be- • 20 - \\•. ß Venus - _ tween mean slope and altitude (Figure 4). Lowest elevations (-2.0 to -1.5 km) are characterizedby relativelyhigh mean _ slopes,which are stronglyinfluencedby the presenceof linear, steep-sidedtroughs(chasmata)in and around Aphrodite Terra 10 -- and Beta Regio [Schaber, 1982; Campbellet al., 1984]. This zone is followed by an elevation range characterizedby con- stant regional slope (about 0.1ø) extending to elevations of approximately0.3 km. From 0.3 to 3.5 km the regionalslope _ increasesconsistentlywith elevation. Above 3.5 km, mean re- gional slopevarieswidely with elevation,but a distinctdepres- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 sion in slopeis apparentbetween3.5 and 5.0 km correspond- Slope, degrees ing to high plateau regions within westernAphrodite Terra, Fig. 3. Regional slope frequency diagram for the three topo- Lakshmi Planum, and eastern Ishtar Terra. For elevations graphic data sets used in this analysis.Each plot illustrates the fre- above 4.5 km the mean slopesare extremelyhigh and highly quency of occurrenceof regional slopeswith data grouped such that the first interval, plotted at 0.0ø, includesregional slopesin the range variable, reflecting the mountainous terrain characteristicof of 0.0ø-0.07ø' all other intervalsare 0.035ø wide and are plotted at the theseelevations.Standard deviations of the mean slope values minimum slopevalue.Seetext and appendixfor details. are only slightly lower than the slope value itself, suggesting Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars' Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, Characteristics on Venus and Earth, J. Geophys. Res., American and physical models, Journal of Geophysical Research, 2001, 106, Geophysical Union, 1985, 90, 3733-3740 23723-23736
Interprétations • Comment comparer les altitudes ? • Hypsométrie • Pentes • Loi d’échelle
Symétrie/invariance d’échelle • von Koch • Mandelbrot
Symétrie ou invariance d’échelle règle • Mesure de la taille totale dépend de la taille de la règle taille totale taille de la règle
Symétrie ou invariance d’échelle règle • Mesure de la taille totale dépend de la taille de la règle taille totale taille de la règle
Symétrie ou invariance d’échelle règle • Mesure de la taille totale dépend de la taille de la règle taille totale taille de la règle
Topographie E598 distance (km) TURCOTTE: TOPOGRAPHY AND GE 104 103 iOII i•x ! i i i I The 5 where • Terre, Mars, Lune : fractal {0Iø 1967] w x a mea Processus brownien cycles the nu coastlin (D=1.5) Am o Earth Oo + n o + • Venus : croute Variance For a t a Venus ++ The x Mars tempo includ moins rigide car + Moon random will co haute température IO8 geoid. examp 10-4 k cycles km I0-a (or ge spheri Fig. 1. Energy spectraldensityof topographySt as a function of for one wave number k. Ther fractal Turcotte, D. L., A fractal interpretation of topography and geoid the frac spectra on the Earth,Moon, Venus, and Mars, jgr, 1987, 92, 597-+ over which data are includedin the expansion.With Xo= 2rrRo are con we find over a ! has th mostti St(k/) --271'Rø3 Z (C]/mq- Slim) m=0 (7)
Comparaison Venus, Mars, Terre • Etude rapide de publication Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical models, Journal of Geophysical Research, 2001, 106, 23723-23736 • Question : •Quels arguments géométriques en faveur d’une différence Nord/Sud sur Mars ?
Océans ? Indices topographiques : • Nord et Sud cratérisé à petite échelle • Seulement Nord compatible avec une processus de dépôt Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical models, Journal of Geophysical Research, 2001, 106, 23723-23736
Plaines Nord de Mars • Cratères enfoui au Nord • Indice MOLA + echo radar de subsurface • Age plus vieux recouvert de coulée de lave + océans
Océans ? Head, J. W.; Kreslavsky, M.; Hiesinger, H.; Ivanov, M.; Pratt, S.; Seibert, N.; Smith, D. E. & Zuber, M. T., Oceans in the past history of mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data, Geophysical Research Letters, 1998, 25, 4401-4404
Interprétations • Processus de surface (érosion, sédimentation, ...) • Processus internes (tectonique des plaques, ...)
Référence Planetary sciences / Imke de Pater, and Jack J. Lissauer,... . - Cambridge, U. K. : Cambridge university press , • ISBN 0-521-48219-4. - ISBN 978-0-521-48219-6. • Orsay-BU Sciences, Rez-de-chaussée • Cote : 523.4 PAT pla • No : 9530338349
Vous pouvez aussi lire