Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France

La page est créée Théo Pereira
 
CONTINUER À LIRE
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Master 2 - Parcours Planétologie Ile de France
               http://planeto.geol.u-psud.fr/master

                          Cours 1

       Topographie des
          planètes
   Frédéric Schmidt - frederic.schmidt@u-psud.fr
          http://planeto.geol.u-psud.fr/Frederic-Schmidt
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Plan

• Définitions
• Mesure de la topographie
 • Principe, incertitudes
• Quelles interprétations planétologiques ?
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Plan

• Définitions
• Mesure de la topographie
 • Principe, incertitudes
• Quelles interprétations planétologiques ?
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Forme théorique
                    d’une planète
Clairaut (XVIIIème siècle)

               • Equilibre
                  hydrostatique d’une
                  sphère en rotation
                  • forme
                  • rotation
                  • inertie
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Géoïde               Terre

Forme d’une planète ?
•   Surface de potentiel de référence

    •   force de gravité

    •   force centrifuge
                                                Mars
•   Description :

    •   variation du rayon à chaque point

    •   variation de gravité à rayon constant
        (ou sur une ellipsoïde)
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Géoïde               Terre

Forme d’une planète ?
•   Surface de potentiel de référence

    •   force de gravité

    •   force centrifuge
                                                Mars
•   Description :

    •   variation du rayon à chaque point

    •   variation de gravité à rayon constant
        (ou sur une ellipsoïde)
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Géoïde terrestre
Définition :
• surface moyenne des
   océans (interface entre
   deux fluides à l’équilibre
   hydrostatique)

                                     représentation avec
                                exagération verticale x 10 000
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Géoïde terrestre
Définition :
• surface moyenne des
   océans (interface entre
   deux fluides à l’équilibre
   hydrostatique)

                                     représentation avec
                                exagération verticale x 10 000
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Géoïde Martien : Areoïde
Définition :
• Ancienne : surface de 6.1
       Mbar (proche du point
       triple de l’eau) MAIS
       variation temporelle !
• MOLA : surface de
                                                                                                     LEMOINE ET AL.: AN IMPROVED MARS GRAVITY MODEL               23,

                                                                                                       0ø                                       0ø

       potentiel équatorial moyen
       (rayon 3396 km)
  Smith, D. E. & Zuber, M. T., The relationship between MOLA northern hemisphere
  topography and the 6.1-Mbar atmospheric pressure surface of Mars, Geophys. Res. Lett.,
  AGU, 1998, 25, 4397-4400
  Lemoine, F. G.; Smith, D. E.; Rowlands, D. D.; Zuber, M. T.; Neumann, G. A.; Chinn, D. S.
  & Pavlis, D. E., An improved solution of the gravity field of Mars (GMM-2B) from Mars
  Global Surveyor, J. Geophys. Res., AGU, 2001, 106, 23359-23376                                                                                        I• mGal
                                                                                              -5OO                 0                5OO               IOO0

                                                                                                              GMM-2B to degree 60
Topographie des planètes - Master 2 - Parcours Planétologie Ile de France Cours 1 - Parcours Planétologie Ile de France
Ellipse de référence /
Datum / Système géodésique
 Ellipse ajustant la forme (géoïde) à l’échelle globale/locale
Altitude

ATTENTION
plusieurs
définition !?

H : altitude

                           http://www.geod.nrcan.gc.ca/hm/images/fig1_heights_f.jpg
Représentation cartographique

Coordonnées ?

  Projection
  sur un plan
Harmoniques sphériques

 • Projection des données dans une nouvelle
   base (orthogonale, normée)
 • Equivalent à la Transformé de Fourier :
   spatiale, sphérique
Harmoniques sphériques

   • Degré 1

   • Degré 2

   • Degré 36
   • ...
Filtrage par harmonique
        sphérique
 • Reconstruction de la topographie terrestre
Degré 1         Degré 1 à 6       Degré 1 à 36
Plan

• Définitions
• Mesure de la topographie
 • Principe, incertitudes
• Quelles interprétations planétologiques ?
Mesure de topographie
Comment calculer l’altitude ?
Mesure de topographie
    Comment calculer l’altitude ?
•   Mesure du champs de gravité par des gravimètres
    (création du géoïde)
• Mesure de la topographie (forme de la planète)
• Ajustement de l’ellipsoïde de référence (nécessaire
    pour la cartographie)
• Calcul de l’altitude et de la coordonnée
    géographique
Mesure de topographie

   Comment calculer l’altitude ?

• Mesure du géoïde par des gravimètres
• Mesure de la topographie (forme de
  la planète)
• Ajustement de l’ellipsoïde de référence
• Calcul de l’altitude
Mesure de topographie
• Trajet aller-retour d’une onde :
 • radar, laser
• Stéréographie
 • imagerie visible, radar
• Photoclinométrie
 • imagerie visible
• Limitations ? Incertitude ?
Exemple d’instruments
• •LaserMars : MOLA (Mars Global Surveyor, 1999)
    •   Lune : LOLA (Lunar Reconnaissance Orbiter, 2009)
    •   Mercure : MLA (Messenger, 2011), BELA (Bepi Columbo, 2020 ?)

•    Radar
    • Venus : radar experiment (Pioneer Venus, 1980), SAR (Magellan, 1990)
    • Mars : MARSIS (Mars Express, 2003), SHARAD (Mars Reconnaissace Orbiter, 2005)
    • Satellites saturniens (Titan, Encelade,...) : RADAR (Cassini, 2004)
•    Stéréographie
    • Mars : HiRISE (Mars Reconnaissace Orbiter, 2005)
    • Mars : HRSC (Mars Express, 2004)
    • Satellites galiléens: PhotoPolarimeter/Radiometer (Galileo, 1995)
•    Photoclinométrie
    • Mars : HiRISE (Mars Reconnaissace Orbiter, 2005)
    • Satellites galiléens: PhotoPolarimeter/Radiometer (Galileo, 1995)
Principe : aller-retour
• Mesure du temps d’aller retour : t   Détecteur

• Vitesse de propagation connu : v
• Positionnement du satellite connu
• distance : d=v.t/2
• Laser et Radar
• visée Nadir                            surface
Principe : aller-retour
• Mesure du temps d’aller retour : t   Détecteur

• Vitesse de propagation connu : v
• Positionnement du satellite connu
• distance : d=v.t/2
• Laser et Radar
• visée Nadir                            surface
Zuber et al. (1992) and Abshire et al. (2000). We advise the                    filt
                 reader to refer to these two sources for more detail.                           tio
                    The MOLA laser operates at a wavelength of 1.064 µm. Pulses

        Principe : aller-retour
                                                                                                 ma
                 are emitted with a repetition rate of 10 Hz. A ranging schematic                (Ta
                 is shown in Fig. 1. The basic properties of the laser and the                   op
                                                                                                 of
                                                                                                 gre
                                                                                                 If
Mesure :
• temps
d’aller-retour
• dispersion
de l’onde
• Idem radar                                                                                     De
et laser                                                                                         Ch
                                                                                                 Te

                    FIG. 1. Laser ranging schematic. Range to the surface R = c!T /2; !T =       Fo
                 Tr − T0 ; T0 —transmitted pulse time; Tr —received time; E 0 —transmitted en-   Pro
                 ergy; Er —received energy. Detector can only register incoming photons when
                 the range gate is open.                                                           a
Perturbations Laser
                198                                                              IVANOV AND MUHLEMAN

• Incertitude de
  position du
  satellite
• Présence de
  nuage

                    FIG. 7. Samples of cloud formations for the south polar region. Horizontal scale is equal to 2050 km. Vertical exaggeration is about 1:50. These four graphs
                illustrate the most extensive cloud formations encountered during the first south winter. Channel 1 returns are marked with black crosses; channel 4 returns are
                marked with blue diamonds. Clusters of channel 1 clouds in the latitude band from 80◦ S to 70◦ S are evident in orbits 1640, 1654, 10075. Clouds located over the
                pole are similar to the North polar cloud formations in Fig. 5. In orbit 1640, a channel 4 cloud formation is observed inside a channel 1 formation.

                composed of CO2 ice, but weIvanov,  A. B. & Muhleman, D. O., Cloud Reflection Observations: Results from
                                              can’t rule out water ice as one of      Most of the cloud echoes are detected during the polar night.
                                            the Mars Orbiter Laser Altimeter, Icarus, 2001, 154, 190-206
                the possible components.                                           We think that we observe nighttime clouds only, because the tem-
                                                                                   perature drops low enough to permit condensation of detectable
                                                                                   clouds. Background radiation from Mars would not preclude
                3.4. North and South Comparison and Analysis
                                                                                   MOLA from seeing clouds, should there be any (such as aphe-
                   In the following section we summarize and compare our lion water ice clouds, that greatly attenuate MOLA’s received
Forma-     tends from "220°E to "300°E and from               curves northeastward in a “scorpion tail” pat-

                                                                                                                   Downloaded from www.sciencemag.org on Nove
Borealis    "50°S to "20°N and spans about 107 km2 in          tern. This arcuate ridge bounds Solis Planum,
 d small    area. The highest portion of the southern rise     a plateau within the southern rise. The ridge

                  Exemple : Mars (MOLA)
mentary     contains the Tharsis Montes (Ascraeus, Pavo-       contains an abundance of heavily cratered
r these     nis, and Arsia). Eastward of the highest ter-      Noachian material that has presumably es-
 achian-    rain but still elevated are the ridged plains of   caped resurfacing by younger Tharsis volca-
 flat in-   Lunae Planum (Fig. 2). The smaller northern        nic flows because of its high elevation. It has
 Hespe-     rise is superposed on the lowlands and covers      been suggested (25) that the termination of

                                                                                                                                                Précision :
                                                                                                                                                • verticale : 1m
                                                                                                                                                • horizontale :
                                                                                                                                                                300m

                                                                                                                 Smith, D. E.; Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Head, J.
                                                                                                                 W.; Garvin, J. B.; Banerdt, W. B.; Muhleman, D. O.; Pettengill, G. H.;
                                                                                                                 Neumann, G. A.; Lemoine, F. G.; Abshire, J. B.; Aharonson, O.;
                                                                                                                 Brown, D. C.; Hauck, S. A.; Ivanov, A. B.; McGovern, P. J.; Zwally,
                                                                                                                 H. J. & Duxbury, T. C., The Global Topography of Mars and
                                                                                                                 Implications for Surface Evolution, Science, 1999, 284, 1495-+

    28 MAY 1999 VOL 284 SCIENCE www.sciencemag.org
as the transmitter frequency exceeds the local plasma fre-
 nd     By sequentially stepping the transmitter frequency after                            directly. However, the plasma frequency can be determined
  ns    eachquency,     electromagnetic
                transmit-receive   cycle, thewave
                                                timepropagation      can the
                                                      delay, and hence     start to
                                                                                            from the harmonic spacing and is fp(local) = 0.09 MHz. At

                             Perturbations Radar
 an         occur.
        range         Remote
                 to the         echoes
                        reflection  point,from
                                            can bethedetermined
                                                       ionosphere as can   then be
                                                                      a func-               somewhat higher frequencies a very strong ionospheric
  to    tiondetected,   starting
               of frequency.      initially
                               A plot  of theattime
                                                zerodelay
                                                      time asdelay, and then
                                                               a function   of with         echo trace can be seen extending from about 0.6 to
  gs        a steadily
        frequency,        increasing
                      Dt(f),  can thentime
                                         be delay
                                              made,asasthe    range tointhe
                                                          illustrated     thereflec-        2 MHz, with time delays ranging from about 2.5 to
 nts        tion point increases. These echoes produce the trace labeled
                                                                                            3.5 ms. The echo trace ends in a well-defined cusp at
 nd         ‘‘ionospheric echo’’ in Fig. 1. As the transmitter frequency
 les        approaches the maximum plasma frequency in the iono-
            sphere, fp(max), the time delay increases rapidly, forming
 an         the left-hand branch of the feature labeled ‘‘cusp’’. The
  he        cusp occurs because the group velocity goes to zero over
  n-        a rapidly increasing path length as the frequency
  n-        approaches fp(max). As soon as the transmitter frequency
  he        exceeds fp(max) the pulse can pass through the ionosphere
  of        to the surface of the planet, where it reflects and returns to
  þ
    .       the spacecraft, forming the right-hand branch of the cusp.
  so             By measuring the time delay as a function of frequency,
 les        the function Dt(f) on the left-hand side of Eq. (1) can be
 res        determined. To obtain the electron density as a function
 as,
            of altitude, the problem is then to solve for the function
 nd
            fp(z) inside the integral. The solution of this integral equa-
 els
            tion, called Abel’s equation, is a classical problem in math-
  he
mic
            ematical physics (Whittaker and Watson, 1927), and has a
 nd         formal solution (Budden, 1961) given by
  of                     Z
                      2 p=2
  de        zðfp Þ ¼           cDtðfp sin aÞda;                                  ð2Þ
                      p a0
ars                                                                                         Fig. 2. A color-coded ionogram showing the echo intensity as a function
 re-        where sin a = fp(z)/f and sin a0 = fp(zsc)/fp(max). Since time                  of the time delay, Dt, and frequency, f. To provide a rough estimate of the
 aft                                                                                        range to the reflection point, the scale on the right gives the apparent
            delay measurements must be made at a discrete set of fre-                       range, which is defined as cDt/2, where c is the speed of light. The white
ag-         quencies, to apply this equation the integral must be                           line shows the time delay computed from Eq. (1) using the dispersion-
mes
        Fig.converted     to shows
             1. The top panel a discrete   sum ofprofile
                                   a representative integrals.    The integration
                                                         of the electron plasma             corrected plasma frequency profile shown in Fig. 3.
will
        frequency, fp, in the Martian ionosphere, and the bottom panel shows the
  in    corresponding ionogram, which is a plot of the time delay, Dt, for a
 an     sounder pulse of frequency, f, to reflect from the ionosphere and return to    Gurnett, D.; Huff, R.; Morgan, D.; Persoon, A.; Averkamp, T.; Kirchner, D.; Duru, F.;
        the spacecraft.                                                                Akalin, F.; Kopf, A.; Nielsen, E.; Safaeinili, A.; Plaut, J. & Picardi, G., An overview of
                                                                                       radar soundings of the martian ionosphere from the Mars Express spacecraft, Advances
                                                                                       in Space Research, 2008, 41, 1335-1346
5.6 Angle d'incidence

                        Perturbations : réflectance
                                                                                                                                  L'angle d'incidence décrit la relation entre l'illumination du radar et la surface d
                                                                                                                                  Plus concrètement, c'est l'angle entre le faisceau du radar et l'objet ciblé. L'angle
                                                                                                                                  d'incidence détermine l'apparence de la cible sur une image.

                                                                                                                                  Un angle d'incidence local peut être déterminé pour chaque pixel d'une image. L
surfaces retournant un signal fort et qui sont brillantes sur l'image radar peuvent retourner                                     présense d'arbres, rochers, édifices et autres structures font varier l'angle d'incide
un signal faible dans la portion du visible et de l'infrarouge du spectre électromagnétique                                       local. Ceci génère des variations de l'intensité du pixel.
et apparaître sombre sur une photographie, une image de Landsat ou de SPOT.

        Rétro-diffusion de l’énergie dépends de :
Rugosité de surface

La rugosité de surface influe sur la réflectivité du rayonnement des hyperfréquences.
Les surfaces lisses et horizontales, qui réfléchissent presque toute l'énergie incidente en

        • angle d’incidence
direction opposée au radar, sont appelées réflecteurs spéculaires. Ces surfaces, comme
l'eau calme ou les routes pavées, apparaissent foncées sur les images radar.

        • rugosité
        • matériaux (constantes diélectrique)
                                                                                                                                                                  variations de l'intensité du pixel

                                                                                                                                 Les angles d'incidence des satellites varient moins que les angles d'incidence de
                                                                                                                               A formes
                                                                                                                                  = antenne; h = variations
                                                                                                                                         aéroportées,       de hauteur
                                                                                                                                                        car leur        deest
                                                                                                                                                                 altitude      beaucoup =plus
                                                                                                                                                                            la surface;     longueur  d'onde
                                                                                                                                                                                                élevée.  Cecidu  radar.une
                                                                                                                                                                                                               donne
                                                                                                                             Surface de rugosité intermédiaire;  réflecteur moyen;   retour d'une petite partie du
                                                                                                                                 illumination plus uniforme sur les images spatiales que sur les images aériennes. signal.
                        rugosité de surface influe sur la réflectivité

   A = antenne; h = variations de hauteur de la surface; = longueur d'onde du radar.
      Surface lisse; réflecteur presque parfait (spéculaire); pas de retour de signal.
                                                                  A = antenne; h = variations de hauteur de la surface; = longueur    d'ondehdu= radar.
                                                                                                                               A = antenne;      variations de hauteur de la surface; = longueur d'onde du radar.
                                                                Surface de rugosité intermédiaire; réflecteur moyen; retour d'une
                                                                                                                             Surface departie
                                                                                                                                  petite       du importante;
                                                                                                                                         rugosité  signal.     réflecteur diffus; retour d'une grande partie du signal.

                                                                                                                            La rugosité de surface est fonction de la longueur d'onde et de l'angle d'incidence du
Ices, Oceans, and Fire: Satellites of the Outer Solar System (2007)

       Radargramme Titan
                       occasional relief of >500 m. Perhaps, as shown in
                       Figs. 1 and 2, the most intriguing feature of the altime-
                       ter echoes is the wide range of “depths” seen.
                                                                                       R
                                                                                   Scien
                                                                                   441.
                                                                                   fan,
                                                                                   2007

• RADAR - Cassini
                                                                                   312
                                                                                       A
                                                                                   the J

• Diamètre de                                                                      Tech

  Titan : 2575 km
• Résolution au sol
  entre 60 km et 25
  km
                            Figure 1: Radargram of T19 altimetry : Red repre-
                       sents strongest signal while the width is related to the
                       surface properties such as material and slope. The
                       spacecraft altitude varies from about 4000 km on the
                       left to 10,000 on the right.
Sources d’incertitudes :
            aller/retour

• Incertitude de géométrie (position du
  satellite, direction de visée)

• Perturbation de l’onde (nuages, ionosphère,...)
• Réflexion en surface (topographie, matériaux)
Principe : stéréoscopie

• Paire d’image
• Points d’appui commun
• Parallaxe
Principe : stéréoscopie

Parallaxe : Pa = xa - xa'
Parallaxe : P = xPP2’ - xPP1=xPP2 - xPP1’
Distance entre les points Nadir: B
Altitude du détecteur : H
Distance focale de la lentille : f

Hauteur en A : ha = H - (B.f)/Pa
∆hab=H.(Pa-Pb)/(P+Pa-Pb)
Exemple
                 Tête de Mars observé par MOC

     Paire
stéréoscopique

  Anaglyphe                  Modèle 3d
Exemple
 • HRSC, Mars Express
 • résolution altitude relative < 300 m

9 canaux
                        Promethei Terra, hourglass craters
Incertitude : stéréoscopie

• Densité de point d’appui (forme du terrain)
• Incertitude de géométrie
• Perturbation de l’onde (nuages,...)
1941ApJ....93..403M
       Principe : photoclinométrie

•   Shape-from-shading

•   Hypothèses:
    milieux homogène
    réflectance connu

                                                                                                     pA
•   Energie en O :                                                                         iA
    Trajet LAO : EA=L.cos(iA).R(LA,AO)
    Trajet LBO : EB=L.cos(iB). R(LB,BO)
                                                                                                      φA         i
    φA ≃ φB
    pA= i+ iA
    pB= i+ iB
                                                                                                   iB φ B
                                                                                                            pB
                  M. Minnaert, The reciprocity Principle in Lunar Photometry , 1941 ApJ 93, 403.
Principe :                                                      φ

 photoclinométrie
• Principe
  R(XX,YY)=R(φ) dépend que de φ pour les matériaux granulaires

  EA/EB= cos(iA)/cos(iB). R(φA)/R(φB), φA ≃ φB

  EA/EB= cos(iA)/cos(iB)          Fonction de phase de la Lune

         Reflectance
            R(φ)

                                                 Angle de phase φ
Incertitudes : photoclinométrie

• Incertitude de géométrie
• Hétérogénéité de surface
• Réflectance bidirectionnelle (glaces, ...)
• Perturbation de l’onde (nuages,...)
Comparaison entre
      techniques

• Estimation des incertitudes sur des
  exemples de la littérature scientifique
Stéréo vs Laser
                     BILLS AND NEREM: MARS TOPOGRAPHY                         32,917

                                                                                                                                         BILLS AND NEREM:       MARS TOPOGRAPHY

                                                                                                     3O
                                                                                                                                                                   If the USGS array were

Stéréo
                                                                                                                                                                 white noise,the averagep
                                                                                                                                                                 be very near zero. Inste
                                                                                                                                                                 persist out to angular s
                                                                                                     2O                                                          shownin Figure 3 are som
                                                                                                                                                                 tions to which            we will retu
                                                                                                                                                                    As a further illustration
                                                                                                                                                                 we plot the latitudinal an
                                                                                                                                                                 difference array in Figur
                                                                                                     10
                                                                                                                                                                 point which is also quite
                                                                                                                                                                 much           more   variation     in
                                                                                                                                                                 in the longitudinal direc
                                                                                                                                                                 variations are nearly !0 ti
                                                                                                                                                                 nal variations and are ver
                                                                                                                                                                 equator.
                                                                                                                                                                   The Earth-based rada
                                                                               A                                                                                 of the contributing sourc
                                                                                                    -10             •              I             i               were restricted to low-la
                                                                                                          -10       0             10            20         30    Earth point on Mars nev
                                                                                                                          MOLA elevation (km)                    by more than the sum o
                                                                                                                                                                 the    mutual         inclination        o

Laser
                                                                                                   Figure 1. Mars topography comparison. Simple
                                                                                                 scatterplot of 1øx 1ø grid valuesof MOLA versusUSGS.            (1.6ø). In contrast,the lo
                                                                                                                                                                 data is quite uniform. It

                                                                                                                pente=0,94
                                                                                                 of Hellas, around Elysium, and at Olympus Mons. The
                                                                                                 largest scale features, however, are prominent bands at
                                                                                                                                                                 MOLA

                                                                                                                                                                 interval.
                                                                                                                                                                                 difference
                                                                                                                                                                 25ø is generally smaller th
                                                                                                                                                                                  We attribute
                                                                                                                                                                                              in the

                                                                                                                                                                                                      th

                                                                                                 fixed latitudes. It is quite clear that in addition to local    the radar         data.

                                                                                                 and regionaldifferencesthe MOLA and USGS topogra-

                                                                                                                    Mars
                                                                                                 phy grids differ in terms of their grosslatitudinal struc-      Spectral Domain C
                                                                                                 tures. We shall return to this topic several times in an           It is also illustrative
                                                                                                 attempt to understand its nature and source.                    USGS Mars topography
                                                                                                    Figure 2 illustrates the differenceplotted as a func-        tive sphericalharmonicex
                                                                                                 tion of the MOLA heights, as was done in Figure 1.              clearer appreciationof th
                                                                                                  Figure 2 vividly illustrates the fact that there are some
                                                                                                 quite substantial local differences.The regressionslope
                                                                                       Bills, B. G.  & Nerem,
                                                                                                  is-0.051      R. S.,
                                                                                                           + 0.001.  ThatMars   topography:
                                                                                                                           is, on average,theLessons
                                                                                                                                              differencelearned
                                                                                                                                                         be-     from
                                                                                                                                                                  lO  spatial
                                                                               B       and spectral
                                                                                                 tween domain
                                                                                                         MOLA comparisons        of MarsisOrbiter
                                                                                                                 and USGS elevations       largelyLaser   Altimeter and U.S.
                                                                                                                                                   indepen-
                                                                                       Geological    Survey   data,   J. Geophys.    Res.,  American    Geophysical
                                                                                                 dent of elevation but decreasesslightly with incre.asing
                                                                                                                                                                   8  Union,
 Plate 1. Marstopography
                       grids.(a) U.S.Geological
                                              surveygirdof topographic
                                                                    heights            2001, 106, -
                                                                                               elevation.
 represented
          bycolorvariations.
                          (b) MarsObserver
                                        LaserAltimetergridof topographic                           Careful examination of the differencegrid in Plate
                                                                                                                                                                       6

 heightsrepresentedby colorvariations.
                                                                                                 2 clearly indicates that the differencesare not entirely              4

                                                                                                 random and are not isotropic. As an illustration of these
                                                                                                 two points (nonrandomand anisotropic)we showthe                       2

                                                                                                 covariancefunction of the differencearray in Figure 3.
                                                                                                                                                                       o
                                                                                                 The covarianceof spherical scalar function fat angu-
                                                                                                 lar offset 7 is the global mean value of the product of               -2   -
                                                                                                 the function / at two locations separated by angular
Radar vs Radar-Stéréo

                                                        Venus

                                                                    HERRICK
                                                                    AND SHARPTON:
Radar altimétrique   Paire d’images

                                                                    TOPOGRAPHY
                                                                    OF VENUSIAN
                                                      gain en résolution
                                                            spatiale

                                                                    IMPACT
  Points d'appui     DEM stéréo

                                                                    CRATERS
                                      Herrick, R. R. & Sharpton, V. L., Implications from
                                      stereo-derived topography of Venusian impact
                                      craters, J. Geophys. Res., American Geophysical
                                      Union, 2000, 105, 20245-20262

                                                                    20,249
power spectrum, of the topography, may constrain how the             than the stereo topography, as expected. Table 1 summarizes
topography is being modified [e.g. 2,3]. Finally, it is important    the characteristics of the six areas investigated.

  Photoclinométrie vs stéréoscopie
to quantify short-wavelength topographic roughness to design
radar instrument characteristics [4] or understand hazards to           data set             ∆x        RMS         dev.(100)       dev.(1)
spacecraft landers.                                                                           m           m               m             m
                                                                        e86-32 Z              32       106.2             7.7         0.21
                                                                        ediss Z               55        87.2             8.5         0.27
                                                                        eplains Z             21        51.4             7.1         0.22
                                                                        erhad Z               65        75.3             5.6         0.20
                                                                        etyre-33 Z            33        55.9            15.9          1.5

        stéréo                                                          manan-80 Z            80        73.9            14.9          1.2

                                                                          Satellite galliléens (Io,
                                                                     Table 1: ‘Z’ denotes a stereo data set. ∆x is the pixel size;

                                                                          Europe, Ganymède,
                                                                     RMS and dev. are the RMS height and the RMS deviation as
                                                                     defined by [9]. The RMS deviation at the specified wavelength

                                                                          Callisto, ...) :
                                                                     (100 m and 1 m, respectively) is derived by extrapolation from
                                                                     the fitted roughness plots shown in Fig. 5.

        PC
                                                                          Pas d’autre moyen
                                                                          que stéréoscopique
                                                                          actuellement !
                                                                              Résolution spatiale meilleure
                                                                               pour la photoclinométrie !

        stéréo                          PC
                                                                    Nimmo, F. & Schenk, P. M., Stereo and Photoclinometric Comparisons and Topographic
                                                                    Roughness of Europa, Lunar and Planetary Institute Science Conference Abstracts,
                                                                    2008, 39, 1464-+

Figure 1: Topography for Erhad (a-PC b-stereo) and Ediss (c-
PC d-stereo) regions of Europa. Colour scale (in m) applies to       Figure 2: a) Coherence between PC and S topography as a
Plan

• Définitions
• Mesure de la topographie
 • Principe, incertitudes
• Quelles interprétations
  planétologiques ?
Interprétations

• Comment comparer les altitudes ?
 • Hypsométrie
 • Pentes
 • loi d’échelle
Interprétations

• Comment comparer les altitudes ?
 • Hypsométrie
 • Pentes
 • Loi d’échelle
Comparaison Venus,
               Mars, Terre

• Etude rapide de deux publications
Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope
                                                                   Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars'
                                                                   topography from the Mars Orbiter Laser Altimeter: Slopes, correlations,
Characteristics on Venus and Earth, J. Geophys. Res., American
                                                                   and physical models, Journal of Geophysical Research, 2001, 106,
Geophysical Union, 1985, 90, 3733-3740
                                                                   23723-23736

• Questions:
      •
   Qu’est-ce qu’un hypsogramme ?
      •       Analyser les hyspogrammes des trois planètes
Vénus
              Rayon équatorial
                                             Terre
                                             Rayon équatorial
                                                                               Mars
                                                                               Rayon équatorial
              6 051,8 km                     6 378,137 km                      3 402,45 km
              (0,95 Terre)                                                     (0,533 Terre)
              Rayon polaire                  Rayon polaire                     Rayon polaire
              6 051,8 km                     6 356,7523142 km                  3 377,4 km
              (0,95 Terre)                                                     (0,533 Terre)
              Périmètre équatorial           Périmètre équatorial              Périmètre équatorial
              38 025 km                      40 075,017 km                     21 344 km
              Superficie                     Superficie                        Superficie
              4,60×108 km²                   510 067 420 km²                   1,448×108 km²
              (0,902 Terre)                                                    (0,284 Terre)
              Volume                         Volume                            Volume
              9,28×1011 km³                  1,08321×1012 km³                  1,638×1011 km³
              (0,857 Terre)                                                    (0,151 Terre)

Comparaison
              Masse                          Masse                             Masse
              4,8685×1024 kg                 5,9736×1024 kg                    6,4185×1023 kg
              (0,815 Terre)                                                    (0,107 Terre)
              Masse volumique moyenne        Masse volumique moyenne           Masse volumique moyenne
              5,204×103 kg/m³                5,515×103 kg/m³                   3,934×103 kg/m³
              Gravité à la surface           Gravité à la surface              Gravité à la surface

 physique
              8,87 m/s²                      9,780 m/s²                        3,69 m/s²
              (0,904 g)                      (0,99732 g)                       (0,376 g)
              Vitesse de libération          Vitesse de libération             Vitesse de libération
              10,361 km/s                    11,186 km/s                       5,027 km/s
              Période de rotation            Période de rotation               Période de rotation
              (jour sidéral)                 (jour sidéral)                    (jour sidéral)
              (rétrograde)                   0,99726949 d                      1,025957 d
              243,0185 d                     (23 h 56 min 4,084 s)             (24,622962 h)
              Vitesse de rotation            Vitesse de rotation               Vitesse de rotation
              (à lʼéquateur)                 (à lʼéquateur)                    (à lʼéquateur)
              6,52 km/h                      1 674,364 km/h                    868,220 km/h
              Inclinaison de lʼaxe           Inclinaison de lʼaxe              Inclinaison de lʼaxe
              -2,64°                         23,4392°                          25,19°
              Albédo moyen                   Albédo moyen                      Albédo moyen
              0,65                           0,367                             0,15
              Température de surface         Température de surface            Température de surface
              % •%    Min. : 719 K (446°C)   % •%    Min. : 184,15 K = -89°C   % •%    Min. : 133 K = -140 °C
              % •%   Moy. : 737 K (464°C)    % •%   Moy. : 288 K = 15 °C       % •%   Moy. : 210 K = -63 °C
              % •%   Max. : 763 K (490°C)    % •%   Max. : 333 K = 60 °C       % •%   Max. : 293 K = 20°C
              Pression atmosphérique         Pression atmosphérique            Pression atmosphérique
              9,3219×106 Pa                  101 325 Pa                        0,7-0,9×103 Pa
              (100 Terre)                                                      (0.001 Terre)
the MOLA topographic profile data (18).            topographic rise (10). However, Fig. 2 (see        long-standing debate over the dominant con-

                                                                                                                                                                                                                                                         Downloaded from www.sciencemag.org on November 23, 20
                                                                                                 Most of the northern lowlands is composed of       also Fig. 6) shows that topographically Thar-      tributors to the high elevations of the Tharsis
                                                                                                 the Late Hesperian–aged (19) Vastitas Borea-       sis actually consists of two broad rises. The      region. A prominent ridge (containing Clari-

                                                           Comparaison Mars/Venus/Terre
                              SHARPTON AND HEAD:                                                 lis Formation,
                                                     IMPLICATIONS OF REGIONAL SLOPE DISTRIBUTION--VENUS AND EARTHwhich is flat and 7549
                                                                                                                                   smooth (Fig.     larger southern rise is superposed on the          tas Fossae; Fig. 2) extends southward from
                                                                                                 2), even at a scale as short as 300 m (Fig. 3).    highlands as a quasi-circular feature that ex-     the region of the Tharsis Montes, and then
                                                                                                 The Amazonian-aged (19) Arcadia Forma-             tends from "220°E to "300°E and from               curves northeastward in a “scorpion tail” pat-
                                                                                                 tion, which overlies the Vastitas Borealis         "50°S to "20°N and spans about 107 km2 in          tern. This arcuate ridge bounds Solis Planum,
                                                                                                 Formation, is also smooth at large and small       area. The highest portion of the southern rise     a plateau within the southern rise. The ridge
                                                                                                 scales, consistent with either a sedimentary       contains the Tharsis Montes (Ascraeus, Pavo-       contains an abundance of heavily cratered
                                                                                                 (4, 20) or volcanic (21) origin for these          nis, and Arsia). Eastward of the highest ter-      Noachian material that has presumably es-
                                                                                                 plains. In the southern hemisphere Noachian-       rain but still elevated are the ridged plains of   caped resurfacing by younger Tharsis volca-
                                                                                                 aged (19) ridged plains form locally flat in-      Lunae Planum (Fig. 2). The smaller northern        nic flows because of its high elevation. It has
                                                                        I                          I
                                                                                                 tercrater deposits, whereas younger Hespe-         rise is superposed on the lowlands and covers      been suggested (25) that the termination of

                                                                                               Fig. 2. Maps of the global topography
                                                                                               of Mars. The projections are Mercator
                                                                                               to 70° latitude and stereographic at the
                                                                                               poles with the south pole at left and
                                                                                               north pole at right. Note the elevation
                                                                                               difference between the northern and
                                                                                               southern hemispheres. The Tharsis vol-
                                                                                               cano-tectonic province is centered near
                                                                                               the equator in the longitude range
                                                                                               220°E to 300°E and contains the vast
                                                                                               east-west trending Valles Marineris
                                                                                               canyon system and several major vol-
                                                                                               canic shields including Olympus Mons
                                                                                               (18°N, 225°E), Alba Patera (42°N,
                                                                                               252°E), Ascraeus Mons (12°N, 248°E),
                                                                                               Pavonis Mons (0°, 247°E), and Arsia
                                                                                               Mons (9°S, 239°E). Regions and struc-
           o                                                       180                         tures discussed in the text include Solis
                                                                                             ?70
                                                                                               Planum (25°S, 270°E), Lunae Planum
                                                                                                I
                                                                                               (10°N,   290°E), and Claritas Fossae
     It                                                                                        (30°S, 255°E). Major impact basins in-
                                                                                               clude Hellas (45°S, 70°E), Argyre (50°S,
                                                                                               320°E), Isidis (12°N, 88°E), and Utopia
                                                                                               (45°N, 110°E). This analysis uses an
                                                                                               areocentric coordinate convention with
                     i,

                                                                                               east longitude positive. Note that color
                                                                                               scale saturates at elevations above 8
                                                                                               km.
                          ß

                                                                               t%                     ß

                              ß ß   ß
                                                                  •.•.'        . ,,

dilli' M

           J                            '       I                                                I

                                                          t;;3            .5           Z.,           B           "        E S

             Plate 1. (Top) Regionalslopemap of earth depictingthe maximumslopemeasured1496 over 3ø by 3ø regions.The rangeof              28 MAY 1999 VOL 284 SCIENCE www.sciencemag.org
           regional slope valuesfor earth, measuredat this scale,extendsfrom 0.0ø to 2.4ø. Standard error associatedwith slope
           calculationsis 0.035ø [Sharptonand Head, 1985]. Each grid cell representsone degreeof latitude and one degree of
           longitude (approximately 111.3 km at the equator). For regional slope less than 0.5ø, each map color representsa 0.1ø
           slope increment; larger slope values are color-codedin 0.5ø increments(see color bar). (Bottom) Regional slope map of
           Venus.The format, resolution,projection,and color scaleare equivalentto that of the top part. The range of regional                     Smith, D. E.; Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Head, J. W.; Garvin,
           slopeson Venusextendsfrom 0.0ø to 2.4ø. At the equator,one degreeof latitude or longitudeequalsapproximately105.6
           km.
                                                                                                                                                   J. B.; Banerdt, W. B.; Muhleman, D. O.; Pettengill, G. H.; Neumann, G. A.;
                                                                                                                                                   Lemoine, F. G.; Abshire, J. B.; Aharonson, O.; Brown, D. C.; Hauck, S. A.;
                                            Sharpton, V. L. & Head, James W., I.,                                                                  Ivanov, A. B.; McGovern, P. J.; Zwally, H. J. & Duxbury, T. C.
                                            Analysis of Regional Slope Characteristics on                                                          The Global Topography of Mars and Implications for Surface Evolution
                                            Venus and Earth, J. Geophys. Res., American                                                            Science, 1999, 284, 1495-+
                                            Geophysical Union, 1985, 90, 3733-3740
Comparaison topographie

 • Hypsométrie                                        =
         “mesure de la
         topographie”
 • Distribution
         d’altitude

Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars'
topography from the Mars Orbiter Laser Altimeter: Slopes, correlations,
and physical models, Journal of Geophysical Research, 2001, 106,
23723-23736
0.8           ,,    [ ....          [ ....          [ ....         [ ....

                                                                                                                              arth
                                                      0.6

                                                      0.4

                                                      0.2

                                                      0.0
                                                                                                                              i ß i I     i    i
                                                                         -5        -2.5                   0        3.5               5
                                                                                                                                                   p
                                                      0.8   :-'     ' ' I ....            I ....          I ....     I ....           I ....       s

Hypsométrie
                                                                                                                                                   q
                                                                                                                    Unloaded
                                                      0.6                                                                                          s
                                                            --                                                                arth             -   n
                                                            _                                                                                  _

                                                      0.2   _

                                                                                                                                                   w
                                                      0.0         , I I [ I.              ] I •/Y•/•/'41
                                                                                                    ] I i•                    i , i ] , i i!       V
                                                                         -5        -2.5                   0        2.5               5             a
                                                      0.8
                                                                                                                                                   V
                                                                                                                                                   t
                                                                                                                            Venus                  V
                                                                                                                                                   0
                                                 •    0.4                                                                                          t
                                                                                                                                                   p
                                                 c•   0.2
                                                                                                                                                   f
                                                                                                                                                   i
                                                                          0         2.5                   5        7.5               10            t
                                                                                             Elevation,       km

                                                   Fig. 2. Differential hypsogramsfor the three topographic data                                   e
                                                 setsusedin this analysis.All three data setsare of equivalentspatial
 Sharpton, V. L. & Head, James W., I.,
                                                 and vertical resolution. Each plot illustrates the frequency of oc-
                                                                                                                                                   e
 Analysis of Regional Slope Characteristics on
 Venus and Earth, J. Geophys. Res., American     currenceof surfaceelevationsgroupedin 100-m elevationincrements.                                  V
 Geophysical Union, 1985, 90, 3733-3740          For both terrestrial cases, 0.0-km elevation refers to sea level; for                             a
                                                 Venus,elevationsare referencedto a planetary radius of 6051.0 km.                                 c
                                                                                                                                                   o
                                                                                                                                                   e
                                                                                                                                                   t
Dichotomie martienne ?
   •   Nord                    •   Sud
   •   Faiblement cratérisée   •   Fortement cratérisée
   •   Jeune                   •   Agé
   •   Faible altitude         •   Altitude élevée

• Mécanisme interne : convection à degrée un
• Océan magmatique : convection à degrée un
• Un/plusieurs impacts géants
Interprétations

• Comment comparer les altitudes ?
 • Hypsométrie
 • Pentes
 • Loi d’échelle
Comparaison Venus,
               Mars, Terre
• Etude rapide de deux publications
                                                                   Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars'
Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope
                                                                   topography from the Mars Orbiter Laser Altimeter: Slopes, correlations,
Characteristics on Venus and Earth, J. Geophys. Res., American
                                                                   and physical models, Journal of Geophysical Research, 2001, 106,
Geophysical Union, 1985, 90, 3733-3740
                                                                   23723-23736

• Questions:
      •
   Analyser les pentes des trois planètes
      •      Quelles sont les implications sur les mécanismes
             externes/internes ?
ations increase systematicallywith elevation and equal or                                                        d

                                               Venus vs Terre
                                                                                     exceedthe mean slopevaluesabove about 4.5 km.                                                                    a
                                                                                       The specificboundariesof the major physiographicprov-                                                          d
                                                                                     inces of Venus [Masursky et al., 1980] do not appear to be                                                       in
                                                                                                                                                                                                      tw
3736                                               SHARPTONAND HEAD: REGIONAL SLOPES--VENUSAND EARTH
                                                                                                                                                                                                      s
                                                                                                                                                                                                      el
                             Venus Mean Slope
                                                                                                                           Earth          Mean Slope                                                  m
                                                                                                          Ear[h      Unloaded                 Mean Slope
                                                                                                                                                                                                      0
   o.a I ....                  I ....                 I ....             I ' 't        o.• '''            I ....        I ....            I ....             I ....           I"'
                                                                                                                                                                               Tibetan
                                                                                                                                                                                                      z
                                                                         high                  • x                         continental                                            Plateau             re
                                               highland               plateaus
                                                                             A
Venus,elevationsare referencedto a planetary radius of 6051.0 km.                            curves' Venus has a significantlylarger percentage(66 + 1%)
                                                                                             of its total surface within this interval than does the unloaded
                                                                                             earth (47 + 1%). It is only for slopesgreater than about 0.3ø

                              Comparaison pente
                                                                                             that the differences between the Venus and earth distributions
The frequencydistribution of regional slopeson Venus and
earth are broadly similar, but they show wide variation in                                   are lessenedslightly from 8 + 1% (loaded)to 6 + 1% (unload-
detail.                                                                                      ed). In order to interpretthe geologicalsignificance
                                                                                                                                                of these
    The modal regionalslopevalue for the earth curve is 0.0ø,                                data, information on the relationshipof slopesand elevations
                                                                                             is requiredso that slopescan be related to geologicand geo-
                                                                                             morphologicprovinces.

                            Regional       Slope Frequency
                                                                                             Correlation of Mean Slope and Elevation
                                                                                     _
                                                                                                The relation between regional slope values and elevations
                                                                                             can be establishedby calculating the mean slope value for
     30            '. Unloaded
                           Earth                                                     _       each 100-m elevation interval and displaying this together
                                                                                     _

          Earth \ -
           _                                                                         _
                                                                                             with the standard deviation associatedwith each mean slope
                                                                                             value. On Venus there is a distinct positive correlation be-
•
     20    - \\•.     ß
                            Venus                                                    -
                                                                                     _
                                                                                             tween mean slope and altitude (Figure 4). Lowest elevations
                                                                                             (-2.0 to -1.5 km) are characterizedby relativelyhigh mean
                                                                                     _
                                                                                             slopes,which are stronglyinfluencedby the presenceof linear,
                                                                                             steep-sidedtroughs(chasmata)in and around Aphrodite Terra
     10                                                                         --
                                                                                             and Beta Regio [Schaber, 1982; Campbellet al., 1984]. This
                                                                                             zone is followed by an elevation range characterizedby con-
                                                                                             stant regional slope (about 0.1ø) extending to elevations of
                                                                                             approximately0.3 km. From 0.3 to 3.5 km the regionalslope
           _

                                                                                             increasesconsistentlywith elevation. Above 3.5 km, mean re-
                                                                                             gional slopevarieswidely with elevation,but a distinctdepres-
               0      0.1     0.2   0.3     0.4   0.5   0.6   0.7   0.8   0.9            1   sion in slopeis apparentbetween3.5 and 5.0 km correspond-
                                          Slope, degrees                                     ing to high plateau regions within westernAphrodite Terra,
  Fig. 3. Regional slope frequency diagram for the three topo-                               Lakshmi Planum, and eastern Ishtar Terra. For elevations
graphic data sets used in this analysis.Each plot illustrates the fre-                       above 4.5 km the mean slopesare extremelyhigh and highly
quency of occurrenceof regional slopeswith data grouped such that
the first interval, plotted at 0.0ø, includesregional slopesin the range                     variable, reflecting the mountainous terrain characteristicof
of 0.0ø-0.07ø' all other intervalsare 0.035ø wide and are plotted at the                     theseelevations.Standard deviations of the mean slope values
minimum slopevalue.Seetext and appendixfor details.                                          are only slightly lower than the slope value itself, suggesting

                                                                                                  Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars'
    Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope
                                                                                                  topography from the Mars Orbiter Laser Altimeter: Slopes, correlations,
    Characteristics on Venus and Earth, J. Geophys. Res., American
                                                                                                  and physical models, Journal of Geophysical Research, 2001, 106,
    Geophysical Union, 1985, 90, 3733-3740
                                                                                                  23723-23736
Venus,elevationsare referencedto a planetary radius of 6051.0 km.                            curves' Venus has a significantlylarger percentage(66 + 1%)
                                                                                             of its total surface within this interval than does the unloaded
                                                                                             earth (47 + 1%). It is only for slopesgreater than about 0.3ø

                              Comparaison pente
                                                                                             that the differences between the Venus and earth distributions
The frequencydistribution of regional slopeson Venus and
earth are broadly similar, but they show wide variation in                                   are lessenedslightly from 8 + 1% (loaded)to 6 + 1% (unload-
detail.                                                                                      ed). In order to interpretthe geologicalsignificance
                                                                                                                                                of these
    The modal regionalslopevalue for the earth curve is 0.0ø,                                data, information on the relationshipof slopesand elevations
                                                                                             is requiredso that slopescan be related to geologicand geo-
                                                                                             morphologicprovinces.

                            Regional       Slope Frequency
                                                                                             Correlation of Mean Slope and Elevation
                                                                                     _
                                                                                                The relation between regional slope values and elevations
                                                                                             can be establishedby calculating the mean slope value for
     30            '. Unloaded
                           Earth                                                     _       each 100-m elevation interval and displaying this together
                                                                                     _

          Earth \ -
           _                                                                         _
                                                                                             with the standard deviation associatedwith each mean slope
                                                                                             value. On Venus there is a distinct positive correlation be-
•
     20    - \\•.     ß
                            Venus                                                    -
                                                                                     _
                                                                                             tween mean slope and altitude (Figure 4). Lowest elevations
                                                                                             (-2.0 to -1.5 km) are characterizedby relativelyhigh mean
                                                                                     _
                                                                                             slopes,which are stronglyinfluencedby the presenceof linear,
                                                                                             steep-sidedtroughs(chasmata)in and around Aphrodite Terra
     10                                                                         --
                                                                                             and Beta Regio [Schaber, 1982; Campbellet al., 1984]. This
                                                                                             zone is followed by an elevation range characterizedby con-
                                                                                             stant regional slope (about 0.1ø) extending to elevations of
                                                                                             approximately0.3 km. From 0.3 to 3.5 km the regionalslope
           _

                                                                                             increasesconsistentlywith elevation. Above 3.5 km, mean re-
                                                                                             gional slopevarieswidely with elevation,but a distinctdepres-
               0      0.1     0.2   0.3     0.4   0.5   0.6   0.7   0.8   0.9            1   sion in slopeis apparentbetween3.5 and 5.0 km correspond-
                                          Slope, degrees                                     ing to high plateau regions within westernAphrodite Terra,
  Fig. 3. Regional slope frequency diagram for the three topo-                               Lakshmi Planum, and eastern Ishtar Terra. For elevations
graphic data sets used in this analysis.Each plot illustrates the fre-                       above 4.5 km the mean slopesare extremelyhigh and highly
quency of occurrenceof regional slopeswith data grouped such that
the first interval, plotted at 0.0ø, includesregional slopesin the range                     variable, reflecting the mountainous terrain characteristicof
of 0.0ø-0.07ø' all other intervalsare 0.035ø wide and are plotted at the                     theseelevations.Standard deviations of the mean slope values
minimum slopevalue.Seetext and appendixfor details.                                          are only slightly lower than the slope value itself, suggesting

                                                                                                  Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars'
    Sharpton, V. L. & Head, James W., I., Analysis of Regional Slope
                                                                                                  topography from the Mars Orbiter Laser Altimeter: Slopes, correlations,
    Characteristics on Venus and Earth, J. Geophys. Res., American
                                                                                                  and physical models, Journal of Geophysical Research, 2001, 106,
    Geophysical Union, 1985, 90, 3733-3740
                                                                                                  23723-23736
Interprétations

• Comment comparer les altitudes ?
 • Hypsométrie
 • Pentes
 • Loi d’échelle
Symétrie/invariance
          d’échelle
• von Koch
• Mandelbrot
Symétrie ou
    invariance
     d’échelle
                                                 règle
• Mesure de la taille totale
  dépend de la taille de la règle
                                     taille
                                    totale

                                              taille de la règle
Symétrie ou
    invariance
     d’échelle
                                                 règle
• Mesure de la taille totale
  dépend de la taille de la règle
                                     taille
                                    totale

                                              taille de la règle
Symétrie ou
    invariance
     d’échelle
                                                 règle
• Mesure de la taille totale
  dépend de la taille de la règle
                                     taille
                                    totale

                                              taille de la règle
Topographie             E598
                                                     distance (km)               TURCOTTE: TOPOGRAPHY AND GE

                                                   104                                    103
                                    iOII
                                           i•x ! i i           i         I                                 The

                                                          5
                                                                                                         where

• Terre, Mars, Lune :
                                                                                                         fractal
                                    {0Iø                                                                 1967] w
                                                                     x                                   a mea

  Processus brownien         cycles
                                                                                                         the nu
                                                                                                         coastlin

  (D=1.5)                      Am
                                                o Earth
                                                                Oo                   +

                                                                     n       o +
• Venus : croute        Variance
                                                                                                         For a t
                                                a Venus                                  ++                The
                                                x Mars                                                   tempo
                                                                                                         includ
  moins rigide car                              + Moon                                                   random
                                                                                                         will co

  haute température                 IO8
                                                                                                         geoid.
                                                                                                         examp
                                                   10-4             k cycles
                                                                       km
                                                                             I0-a                        (or ge
                                                                                                         spheri
                            Fig. 1. Energy spectraldensityof topographySt as a function of               for one
                            wave number    k.                                                              Ther
                                                                                                         fractal
                                     Turcotte, D. L., A fractal interpretation of topography and geoid   the frac
                                     spectra on the Earth,Moon, Venus, and Mars, jgr, 1987, 92, 597-+
                            over which data are includedin the expansion.With Xo= 2rrRo are con
                            we find                                                     over a
                                                         !                              has th
                                                                                        mostti
                                                St(k/)
                                                   --271'Rø3
                                                        Z (C]/mq-
                                                              Slim)
                                                              m=0
                                                                                    (7)
Comparaison Venus,
         Mars, Terre

• Etude rapide de publication
          Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars'
          topography from the Mars Orbiter Laser Altimeter: Slopes, correlations,
          and physical models, Journal of Geophysical Research, 2001, 106,
          23723-23736

• Question  :
  •Quels arguments géométriques en faveur d’une
      différence Nord/Sud sur Mars ?
Océans ?

Indices topographiques :
•   Nord et Sud cratérisé à petite
    échelle

•   Seulement Nord compatible avec
    une processus de dépôt

Aharonson, O.; Zuber, M. T. & Rothman, D. H., Statistics of Mars'
topography from the Mars Orbiter Laser Altimeter: Slopes, correlations,
and physical models, Journal of Geophysical Research, 2001, 106,
23723-23736
Plaines Nord de Mars

•   Cratères enfoui au Nord

•   Indice MOLA + echo
    radar de subsurface

•   Age plus vieux
    recouvert de coulée de
    lave + océans
Océans ?

           Head, J. W.; Kreslavsky, M.; Hiesinger, H.; Ivanov, M.; Pratt, S.;
           Seibert, N.; Smith, D. E. & Zuber, M. T., Oceans in the past history of
           mars: Tests for their presence using Mars Orbiter Laser Altimeter
           (MOLA) data, Geophysical Research Letters, 1998, 25, 4401-4404
Interprétations

• Processus de surface (érosion,
  sédimentation, ...)
• Processus internes (tectonique des
  plaques, ...)
Référence
Planetary sciences / Imke de Pater, and Jack J. Lissauer,... . -
Cambridge, U. K. : Cambridge university press ,

 •   ISBN 0-521-48219-4. - ISBN 978-0-521-48219-6.

 •   Orsay-BU Sciences, Rez-de-chaussée

 •   Cote : 523.4 PAT pla

 •   No : 9530338349
Vous pouvez aussi lire