PROGRAMME - Journées Plénières du GDR NEMO
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
Membres du Conseil Scientifique Amandine BELLEC Laboratoire Matériaux et Phénomènes Quantiques (MPQ) UMR 7162 – Paris Marie Laure BOQUET Laboratoire de physique de l’ENS (LPENS) – UMR 8023, Paris Xavier BOUJU CEMES – UPR 8011, Toulouse Stéphane CAMPIDELLI Laboratoire d’Innovation en Chimie des Surfaces et Nanosciences (LICSEN) DRF/IRAMIS/NIMBE (UMR 3685) – Saclay Frédéric CHERIOUX Institut Franche-Comté électronique mécanique thermique et optique – sciences et technologies (FEMTO-ST) – UMR 6174, Besancon Saioa COBO Département de Chimie Moléculaire (DCM) – UMR 52550, Grenoble Johann CORAUX Institut Néel – UPR 2940, Grenoble Jean-François DAYEN Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) – UMR 7504, Strasbourg Bruno FABRE Institut des Sciences Chimiques de Rennes – UMR 6226, Rennes Benoit HACKENS Université Catholique de Louvain, Louvain (Belgique) Jean Christophe LACROIX Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS) – UMR 7086, Paris Philippe LECLERE Laboratory for Chemistry of Novel Materials, Mons (Belgique) Richard MATTANA Unité Mixte de Physique CNRS/Thales (UMPhy) – UMR137, Saclay Anna PROUST Institut Parisien de Chimie Moléculaire UMR 8232 – Sorbonne Université – Paris Patrice RANNOU Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces (LEPMI) – UMR 5279, Grenoble Paolo SAMORI Institut de science et d’ingénierie supramoléculaires (ISIS) – UMR 7006, Strasbourg Pierre SENEOR Unité Mixte de Physique CNRS/Thales (UMPhy) – UMR137, Saclay Olivier SIRI Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) – UMR7325, Marseille Dominique VUILLAUME Institut d’électronique, de microélectronique et de nanotechnologie (IEMN) – UMR 8520, Lille Jean WEISS Institut de Chimie de Strasbourg – UMR 7177, Strasbourg 2
Conférenciers Invités Axe 1 - Systèmes molécule unique, Axe 2 - Jonctions à plus large échelle, mémoires et switches mémoires et switches Dr. Christian Joachim Prof. Jean-Christophe Lacroix CNRS - Université de Toulouse Université Paris Cité Axe 3 - Matériaux & Ingénierie Axe 4 Transverse - Outils de moléculaire caractérisation et de modélisation Dr. Saioa Cobo Prof. Marie-Laure Bocquet Université Grenoble Alpes Ecole Normale Supérieur Membres du Bureau Pascal Martin Yannick Dappe Stéphane Lenfant Maria Luisa Della Rocca Directeur du GDR Directeur adjoint du GDR Directeur adjoint du GDR Laboratoire MPQU Laboratoire ITODYS Laboratoire SPEC, CEA, Laboratoire IEMN MR 7162 UMR 7086 CNRS UMR 8520 Université Paris Cité Université Paris Cité Université Paris-Saclay Université de Lille Laurent Limot Denis Frath Neus Vila Vincent Huc Laboratoire IPCMS Laboratoire LCH Laboratoire LCPME Laboratoire ICMMO UMR 7504 UMR 5182 UMR 7564 UMR 8182 Université de Strasbourg ENS de Lyon Université de Lorraine Université Paris Saclay 3
Programme Lundi 26 septembre 2022 08h30 Accueil 09h00 Présentation du GDR NEMO 09h10 Invité - Christian Joachim A1 From the single molecular rectifier to a full digital adder in a single molecule 09h50 Pause café 10h20 Rémi Avriller Photon-emission statistics induced by electron tunneling in plasmonic nanojunctions 10h40 Amandine Bellec Voltage-Induced Bistability of Single Spin-Crossover Molecules in a Two-Dimensional Monolayer 11h00 Cyrille Barreteau Axe 1 Spin manipulation and detection at the single molecule scale: Towards a new concept of device in molecular spintronics 11h20 Xiaonan Sun Single Molecule Junctions from Metal-Complex Molecules: Long range charge transport, stability and I/V characteristics 11h40 Lionel Patrone Self-assembled monolayers on Ge as passivating & insulating films 12h00 Déjeuner 13h30 Invité - Jean-Christophe Lacroix Electrochemistry does the impossible: Robust and Reliable Molecular Junctions 14h10 Anna Proust Axe 2 Manipulating Polyoxometalates at the nanoscale: charge transport in POM-based molecular junctions 14h30 Stéphane Rigaut Molecular Electronics with Organometallic Complexes as Wires and Switches 14h50 Pause café 15h20 Clément Barraud Spin filtering effects through graphene/molecules heterostructures 15h40 Dominique Vuillaume Molecule-Nanoparticle 2D networks for neuro-inspired computing: concepts, results and perspectives 16h00 Bruno Fabre Axe 2 Functionalized Silicon Surfaces for the Development of Light-Activated Molecular Electronics Devices 16h20 Mathieu Gonidec Switchable spin-crossover molecular junctions 16h40 Benoît Gobaut Quantum information encoding & Energy harvesting using molecular spintronics 17h00 Table ronde 18h30 Cocktail 4
Programme Mardi 27 septembre 2022 08h30 Invité - Saioa Cobo Matériaux & Ingénierie moléculaire : de la molécule unique au dispositif 09h10 David Kreher Axe 3 New TADF emitters based on pyridazine for OLEDs applications 09h30 Jérôme Lagoute Nanostructuration of nitrogen dopants in graphene with a submonolayer molecular resist to form sharp junctions 09h50 Pause café 10h20 Christophe Bucher Manipulating Molecules with Electrons: From Machines to Responsive Soft Materials 10h40 Amparo Ruiz-Carretero Exploring the role of hydrogen-bonding and supramolecular chirality in organic electronics Axe 3 11h00 Frédéric Lafolet From electrografted layers to molecular junctions based on coordination complexes 11h20 Nataliya Kalashnyk Reactivity and selectivity of homo-coupling reactions driven by surface orientation and temperature 11h40 Rodrigue Lescouëzec Équipe de Recherche en Matériaux Moléculaires et Spectroscopie 12h00 Déjeuner 13h30 Invité - Marie-Laure Bocquet Interfaces fonctionnelles en UHV et dans l’eau : apports récents des simulations ab initio Axe 4 14h10 Jérôme Cornil Theoretical Insight into the Electronic Properties of Functional Molecular Junctions 14h30 Karine Costuas Computational design of molecular systems for nano-thermoelectric applications 14h50 Pause café 15h10 Dongzhe Li Negative differential resistance in spin crossover molecular devices 15h30 Christophe Krzeminski Axe 4 Modélisation Physique d’Interrupteur Moléculaire 15h50 Alexander Smogunov Simulations ab initio des phénomènes de transport et dynamique quantique dans des nanostructures 16h10 Table ronde - Conclusion 16h40 Clôture des premières journées plénières du GDR Nemo 5
From the single molecular rectifier to a full digital adder in a single molecule Christian Joachim Centre d’Élaboration de Matériaux et d’Études Structurales (CEMES-CNRS), Université de Toulouse, 29 Rue J. Marvig, BP 94347, 31055 Toulouse Cedex, France. joachim@cemes.fr Abstract: We have 50 years. From the first IBM patent in molecular electronics [1] and the 1974 A. Aviram and M. Ratner publication proposing a single molecule molecular rectifier [2] to its recent merging with quantum engineering and the quantum Hamiltonian computing (QHC) approach [3,4] (already anticipated in the 80’s [5]), a lot of avenues have been explored for single molecule molecular electronics [6]: chemistry [7] and surface science [8], nanolithography reaching 5 nm co-planar metal nano-junctions [9], instrumentations with the new LT-UHV 4-STM [10], nano-packaging with UHV compatible back interconnects [11] and quantum chemistry with the multi-channels molecular orbital basis set Elastic Scattering Quantum Chemistry (ESQC) calculations of a tunneling current intensity and its CI-ESQC generalization [12]. The objective is now for a single molecule to be not only a switch [13] or an amplifier [14] or a classical electronic circuit [15] but finally a quantum digital calculator by itself [16]. From time to time and along those 50 years, new fields emerged like single molecule mechanical machines [17] and more fundamental questions arise like the STM-STS mapping (or not) of molecular orbitals [18] or the chase of the elusive super-tunneling effect [19,20]. References: [1]: A. Aviram, P.E. Seiden, Patent filed 20th June 1973, No.: 371,788 1973, USPTO No: 3,833,894 [2]: Aviram, M. Ratner, Chem. Phys. Lett. 29, 277, (1974). [3]: W.H. Soe and coll., ACS Nano, 5 ,1436 (2011). [4]: P. W. K. Jensen and coll., Quantum Sci. Technol. 4, 015013 (2019). [5]: C. Joachim, J.P. Launay, “Molecular Electronics Devices” p. 149, Ed. F.L. Carter (Elsevier, 1988). [6]: C. Joachim, J. K. Gimzewski and A. Aviram, Nature 408, 541 (2000). [7]: J.P. Launay, Chem. Soc. Rev., 30, 386 (2001). [8]: G. Franc, A. Gourdon, Phys Chem Chem Phys, 131,14283 (2011). [9]: M. S. M. Saifullah, T. Ondarçuhu, D. F. Koltsov, C. Joachim, M. Welland, Nanotechnology, 13, 659 (2002). [10]: J. Yang, D. Sordes, M. Kolmer, D. Martrou and C. Joachim, Eur. Phys. J. Appl. Phys. 73, 10702 (2016). [11]: D. Sordes and coll., Springer Series: “Advances Atom and Single Molecule Machines”: Vol. IX, p. 25 (2017). [12]: M. Portais, C. Joachim, Chem. Phys. Lett., 592, 272 (2014). [13]: A. Aviram, C. Joachim, M. Pomerantz, Chem. Phys. Lett., 146, 490 (1988). [14]: C. Joachim et J.K. Gimzewski, Chem. Phys. Lett., 265, 353 (1997). [15]: J. C. Ellenbogen, J. C. Love, Proc. IEEE, 88, 386 (2000). [16]: W.H. Soe, P. de Mendoza, A.M. Echavarren, C. Joachim, J. Phys. Chem. Lett, 12, 8528 (2021). [17]: J.K. Gimzewski, C. Joachim, R.R. Schlittler, V. Langlais, H. Tang, J. Johanson, Science, 281, 531 (1998). [18]: J. Repp, G. Meyer, S. Stojkovic, A. Gourdon, C. Joachim, Phys. Rev. Lett., 94, 026803 (2005). [19]: C. Joachim, M. Ratner, PNAS, 102, 8801 (2005). [20]: D. Skidin and coll., Nanoscale, 10, 17131 (2018). 6
Photon-emission statistics induced by electron tunneling in plasmonic nanojunctions R.Avrillera , Q. Schaeverbekea,b , T. Frederiksenb ,c, and F. Pistolesi a a Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France. bDonostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián. c Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain. Abstract: We investigate the statistics of photons emitted by tunneling electrons in a single electronic level plasmonic nanojunction (see Fig.1). We compute the waiting-time distribution of successive emitted photons . When the cavity damping rate is larger than the electronic tunneling rate , we show that in the photon-antibunching regime, indicates that the average delay time between two successive photon-emission events is given by . This is in contrast with the usually considered second- order correlation function of emitted photons, , which displays the single timescale . Our analysis shows a relevant example for which gives independent information on the photon-emission statistics with respect to , leading to physical insight into the problem. We discuss how this information can be extracted from experiments even in the presence of a nonperfect photon-detection yield. Figure 1 Representation of a current-driven STM plasmonic nanojunction. The cavity emits photons upon tunneling of single electrons across the STM junction. The emitted photons are collected by a detector. Adapted from Ref[1]. References: [1] R. Avriller, Q. Schaeverbeke, T. Frederiksen, and F. Pistolesi, Phys. Rev. B 104, L241403 (2021). 7
Voltage-Induced Bistability of Single Spin-Crossover Molecules in a Two-Dimensional Monolayer Yongfeng TONGa, Massine KELAIa, Kaushik BAIRAGIa, Vincent REPAINa, Jérôme LAGOUTEa, Yann GIRARDa, Sylvie ROUSSETa, Marie-Laure BOILLOTb, Talal MALLAHb, Cristian ENACHESCUc, Amandine BELLECa a Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR6271, F-75013, Paris, France. Email:amandine.bellec@u-paris.fr b Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay 12 Cedex, France c Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi 700506, Romania Abstract: Bistable spin-crossover molecules are particularly interesting for the development of innovative electronic and spintronic devices as they present two spin states that can be controlled by external stimuli. Here, we report the voltage-induced switching of the high spin/low spin electronic states of spin crossover molecules self-assembled in dense 2D networks on Au(111) and Cu(111) by scanning tunneling microscopy at low temperature. On Au(111), voltage pulses lead to the non-local switching of the molecules from any - high or low - spin state to the other followed by a spontaneous relaxation towards their initial state within minutes. On the contrary, on Cu(111), single molecules can be addressed at will. They retain their new electronic configuration after a voltage pulse. The memory effect demonstrated on Cu(111) is due to an interplay between long range intermolecular interaction and molecule/substrate coupling as confirmed by mechanoelastic simulations1. Figure a) Scheme of the manipulation by voltage-pulses. b) 10x10nm2 and c) 10x12.5nm2 topographic images where “LS” and “HS” have been written by voltage pulses (V=0.3 V, I=3 pA). References: 1. Y. Tong et al., J. Phys. Chem Lett., 12, 11029 (2021). 8
Spin manipulation and detection at the single molecule scale: Towards a new concept of device in molecular spintronics Fei Gao,a Dongzhe Li,b Cyrille Barreteau,c Mads Brandbygea a Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. b CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France. c Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France. Email : cyrille.barreteau@cea.fr Abstract: Spin manipulation at the nanoscale is a problem of major importance both at the fundamental and technological levels. Magnetic molecules deposited on a surface offer a unique test bed, but it is difficult, if not impossible, to explore experimentally the many possible avenues given the huge combination of molecule/surface systems that exist. This is why modelling plays a key role in this field. We have shown by computational methods of electronic structure and transport that tetraphenyl iron porphyrin (FeTPP), deposited on a boron-doped graphene substrate, possesses remarkable properties that make it a potential candidate for a molecular spintronic device driven solely by the application of a gate voltage In particular we showed that FeTPP goes from a spin S=1 to S=3/2 and the iron goes from an oxidation state Fe2+ to Fe3+ when deposited on B-doped graphene. More interestingly, when a negative bias voltage is applied the molecule reverts to its S=1 state as on undoped graphene where the interaction is much weaker and the magnetic polarization disappears on the boron. In addition, this change can be detected via the spin polarization of the electronic transport through the graphene sheet. a) Schematic representation of a FeTPP molecule on a layer of (doped) graphene with an STM tip and a grid underneath the graphene. b) The two magnetic states (S=3/2 or S=1) of the molecule on boron -doped graphene that can be reversibly obtained depending on the applied grid voltage. c) Spin polarization of the electronic transport in the graphene plane: it is 10% without voltage and almost disappears with a negative voltage This corresponds to 0 or 1 states that can be written with a voltage and read with the current. We have therefore proposed a new concept for writing and reading spin states at the single molecule scale using a process that requires an electrical operation (gate voltage) that is much less energy consuming than the application of a magnetic field or of an intense electric current. This work, published in Physical Review Letters [1], could pave the way for the development of new low-power spintronic devices. References: [1] “Proposal for all-electrical spin manipulation and detection for a single molecule on boron-substituted graphene”. Fei Gao, Dongzhe Li, Cyrille Barreteau, Mads Brandbyge. Phys. Rev. Lett. 129, 027201 (2022). 9
Single Molecule Junctions from Metal-Complex Molecules: Long range charge transport, stability and I/V characteristics Xilei Yao,a Maxime Vonesch, b Frédéric Lafolet,a Jean Weiss, b Xiaonan Sun,a* and Jean- Christophe Lacroix a* a ITODYS, CNRS-UMR 7086, Université de Paris Cite, 15 rue Jean-Antoine de Baïf, Paris, France. Email:sun.xiaonan@u-paris.fr b Institut de Chimie, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg Abstract: The research of single molecule junction (SMJ) aims to miniaturize the molecular electronics in size and to optimize the charge transports in efficiency. A SMJ is formed when a single molecule is connected between two conducting electrodes. We have recently studied SMJs, based on two types of organometallic oligomers. They are deposited as ultrathin layers on an ultra-flat gold bottom electrode and are contacted by an STM tip used in various modes (STM-break junction or I(t) mode). The first systems are based on Au-[metal-(tpy)2]n-Au (n = 1–4). Highly efficient long range transport is observed from Au-[Co(tpy)2]n-Au SMJs where the conductance (~10-3 G0) shows very weak length dependence. An extremely low attenuation factor (β∼0.19 nm–1) is obtained which indicates that resonant charge transport is the main transport mechanism. By varying the SMJ metal center from Co to Ru, the conductance decreases by 1 order of magnitude. In Au-[Ru(tpy)2]n-Au and Au- [Ru(bpy)3]n-Au SMJs, a charge transport transition from direct tunneling to hopping is evidenced from the length-dependent β-plot in the right figure. Three different transports mechanisms are observed with clear molecular signature. (1) In a second system, Au-[metal-porphyrine]n- Au SMJ is studied on both their transport properties and their stability by recording the SMJ life time, namely the G(t) measurements. Au-[NH2-CoTPP]n-Au SMJs show random telegraph G(t) signals first then stabilize with a surprisingly long lifetime around 10s.(2) By adding an extra NH2 anchoring group, Au-[NH2-CoTPP-NH2]n- Au SMJs are recorded to stabilize with a life time as long as 1 min. Thanks to the high stability, intensive I(V) measurements at a single molecule level are easily feasible. The I/V characteristic from different SMJs indicates that, the applied bias voltage decreases the attenuation factor and drives the device toward resonant tunneling. (3) We have therefore obtained SMJs with unprecedented stability and studied their transport properties using three complementary characterizations: the STM-bj G(d) histogram, the stability from G(t) and the voltage dependent conductance G(V) measurements. The observed unprecedented stability is likely due to a combined contribution: the diazonium grafting covalently immobilizes molecules and impedes molecule movements; the anchoring groups optimize the top molecule-tip contact. References: [1] X. Yao, X. Sun*, F. Lafolet, J. C. Lacroix*, Nano Lett. 20, 9 (2020) 6899–6907. [2] X. Yao, M. Vonesch, M. Combes, J. Weiss, X. Sun*, J. C. Lacroix*, Nano Lett. 21, 15 (2021) 6540. [3] X. Yao, M. Vonesch, J. Weiss, X. Sun*, J. C. Lacroix*, submitted. 10
Self-assembled monolayers on Ge as passivating & insulating films Mohamed-Amine Guerboukhaa, Virginie Gadennea, Hela Mrezguiab, Luca Giovanellib, Younal Ksarib, Guillaume Monierc, Victorien Jeuxd, Jean-Manuel Raimundoe, Lionel Patronea a Aix Marseille Univ., Université de Toulon, CNRS, IM2NP UMR 7334, Yncréa Méditerranée, ISEN Toulon, Maison du Numérique et de l’Innovation, Place G. Pompidou, 83000 Toulon, France - lionel.patrone@im2np.fr b Aix Marseille Univ., Université de Toulon, CNRS, IM2NP UMR 7334, 13397, Marseille Cedex 20, France c Univ Clermont Auvergne, CNRS, SIGMA Clermont, Inst Pascal, F-63000 Clermont Ferrand, France d ESCOM Chimie, 1 allée du réseau JM Buckmaster, 60200 Compiègne, France e CINaM UMR CNRS 7325, Aix-Marseille Université, 13288 Marseille cedex 09, France Ge is emerging as a likely material in the next generation of high-frequency field effect transistors. However, the preparation of an interfacial layer enabling to passivate and insulate Ge surface is still problematic. A promising approach consists in designing new self-assembled molecular monolayers (SAMs) [1] grafted on Ge exhibiting highly insulating and passivating properties as new high-K self-assembled nanodielectrics [2]. We have studied SAMs of model molecules such as alkylthiols and fluoro-alkylthiols, and of specially synthesized non-charged novel push-pull chromophores bearing electron donor and acceptor groups, separated by a pi-conjugated bithiophene bridge which promotes electron transfer and a subsequent dipole formation [3] (Fig. 1a). Indeed, due to the alignment of the oriented dipoles promoted by the SAM deposition strategy, such push-pull chromophores have been shown to form highly polarizable insulating films in the literature [2]. We have adapted and developed the original Ge deoxidation/grafting technique in hydro-alcoholic solution [4] and shown that, compared to the usual deoxidizing acid treatment, it gives smoother surfaces and well-organized SAMs, which is proven by ellipsometry, wettability, and scanning probe microscopy analyses. The grafting of alkylthiols and fluoro-alkylthiols on Ge has been performed directly in a single step, whereas for the push-pull chromophores designed with a carboxylic anchoring group, we have achieved a two-step grafting with amide bonding on pre-assembled amine-terminated sticking layers. Among the latter, we have demonstrated aminothiophenol SAMs exhibit a better arrangement than cysteamine, with a smooth monolayer film suitable for grafting ordered push-pull SAMs on top. UV-Visible absorption spectroscopy of push-pull chromophores in solution was used to determine the concentration limit to avoid aggregation. X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR) analyses demonstrate the oxide removal from the Ge surface after the SAM formation (Fig. 1b-c). Statistical electrical analyses revealed that with such push-pull SAMs, we have been able to decrease the current by a factor of 105 compared to Ge, and 104 compared to dodecane SAMs of similar thickness (Fig. 1d). Results have been analyzed by transition voltage spectroscopy [5], and successfully correlated with spectroscopic analyses of molecular levels, using inverse photoemission spectroscopy and XPS valence band determination for probing the unoccupied and occupied molecular orbitals respectively, as well as with DFT calculations, thus allowing to identify the highest occupied molecular orbital as the level involved in the electronic transport through the push-pull SAM. Dipole formation has also been evidenced in the SAM. a) b) c) Ge d) 01s Ge3d GeO2 Ge Ge Ge PFDT DOT PP Fig. 1. a. Molecules studied (dodecanethiol DT, perfluorodecanethiol PFDT, push-pull PP); b-c. XPS spectra for the various SAM: O1s (b) &Ge3d (c); d. Current density measured at +1V for DOT & PP SAM. 1. A. Ulman, An Introduction to Ultrathin Organic Films, Academic Press (Ed.), Boston (1991) 2. A. Facchetti et al., Adv. Mater. 17 (2005) 1705; Y.G. Ha et al., Chem. Mater. 21 (2009) 1173 3. V. Malytskyi et al., Tetrahedron 73 (2017) 5738 4. J.N. Hohman et al., Chem. Sci. 2 (2011) 1334 5. X. Lefevre et al., J. Phys. Chem. C 119 (2015) 5703 11
Electrochemistry does the impossible: Robust and Reliable Molecular Junctions Jean Christophe Lacroix*, University Paris Diderot, ITODYS, Nanoelectrochemistry Group, UMR CNRS 7086, 15 rue Jean Antoine de Baif, 75205 Paris cedex 13, France lacroix@univ-paris-diderot.fr Abstract : Molecular junction (Mj) consists of an assembly of many molecules or a single molecule between two conducting electrodes and is the basic component of molecular electronics. [1–5] Current versus potential curves characterize Mj transport properties and depend mainly on the distance between the two electrodes and on the coupling of the molecules to the contacts which can be weak when little interactions exist, or strong when covalent bounds are created between the electrodes and the molecules. Initial proposals were mainly theoretical and did no pay attention to the binding of the molecules to the electrodes. This communication describes the advances made in the past five years when the electroreduction of diazonium compounds is used to generate molecular junctions. It focuses on results obtained in ITODYS (6-10), describes some of the many electronic functions that can be obtained and gives some perspectives. 1. Lacroix JC (2018) Electrochemistry does the a) a) b) Ln J (Current Density A.cm-2) Co(tpy)2 7nm VIOC1 7nm 0,01250 0 nm-1 Current Density (A.cm-2) 0,00625 -3 nm -1 Ru(tby)3 7nm b) nm -1 0,00000 -6 nm -1 BTB 7nm Co(tpy)2 -0,00625 -9 VIOC1 n -1 Ru(by)3 m BTB -0,01250 -12 -1,0 -0,5 0,0 0,5 1,0 0 2 4 6 8 10 12 14 Applied Voltage (V) Molecular Layer Thickness (nm) impossible: Robust and reliable large area molecular junctions. Curr Opin Electrochem 7:153–160 . 2. Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-Scale Electronics: From Concept to Function. Chem Rev 116:4318–4440 4. McCreery RL, Yan H, Bergren AJ (2013) A critical perspective on molecular electronic junctions: There is plenty of room in the middle. Phys Chem Chem Phys 15:1065–1081 . 5. Vilan A, Aswal D, Cahen D (2017) Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chem Rev 117:4248–4286 . 6. Bayat A, Lacroix JC, McCreery RL (2016) Control of Electronic Symmetry and Rectification through Energy Level Variations in Bilayer Molecular Junctions. J Am Chem Soc 138:12287– 12296 7 Nguyen Q.V., Martin P, Frath D, Della Rocca ML, Lafolet F, Barraud C, Lafarge P, Mukundan V, James D, McCreery R, Lacroix J-C Control of Rectification in Molecular Junctions: Contact Effects and Molecular Signature. J Am Chem Soc 139:11913–11922 9. Nguyen Q.V., Tefashe U, Martin P, Della Rocca ML, Lafolet F, Lafarge P, McCreery RL, Lacroix J-C (2020) Molecular Signature and Activationless Transport in Cobalt-Terpyridine-Based Molecular Junctions. Adv Electron Mater 6:1901416 . 10. Hnid I, Frath D, Lafolet F, Sun X, Lacroix J-C (2020) Highly Efficient Photoswitch in Diarylethene- Based Molecular Junctions. J Am Chem Soc 142:7732–7736 . 11 Yao X, Vonesch M, Combes M, Weiss J, Sun X, Lacroix J-C (2021) Single-Molecule Junctions with Highly Improved Stability. Nano Lett 21:6540–6548 . 12
Manipulating Polyoxometalates at the nanoscale: charge transport in POM-based molecular junctions Anna Proust,a Florence Volatron,a Stéphane Lenfant,b Dominique Vuillaumeb a Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France. Email: anna.proust@sorbonne-universite.fr b Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poinc aré, Villeneuve d'Ascq, France. Polyoxometalates (POMs) are a class of early transition metal oxide clusters endowed with highly tunable electronic properties. POMs meet several criteria to hold great promise in nanoelectronics: they can be engineered at the molecular level, they display multiple redox states that can be successively and reversibly addressed,1 added electrons are delocalized on the POM skeleton, POMs can be processed from solution and they are thermally robust, which makes them compatible with CMOS (complementary metal-oxide semi-conductor) technology. Therefore, electron transport properties of POM-molecular junctions have been investigated 2 and they have also been integrated in flash-type memory devices 3 and resistive switching materials.4 Yet, the shape-processing of POMs is crucial to control the molecule/electrode interface and to get uniform assemblies. We will present examples of electrostatic 5 and covalent deposition of POMs 6,7 to form densely packed monolayers and we will show how we have been able to translate the relative POM redox properties in solution to their solid state molecular junction energetics. 4 TBA AFM 3 TB A Sn KWSn Si KWSi 200nm Si O OH O O O O O From POM redox properties in solution to the electron transport characteristics of their molecular junctions 7 References: (1) Moors, M.; Warneke, J.; López, X.; de Graaf, C.; Abel, B.; Monakhov, K. Yu. Acc. Chem. Res. 2021, 54 (17), 3377–3389. (2) Douvas, A. M.; Makarona, E.; Glezos, N.; Argitis, P.; Mielczarski, J. A.; Mielczarski, E. ACS Nano 2008, 2 (4), 733–742. (3) Busche, C.; Vilà-Nadal, L.; Yan, J.; Miras, H. N.; Long, D.-L.; Georgiev, V. P.; Asenov, A.; Pedersen, R. H.; Gadegaard, N.; Mirza, M. M.; Paul, D. J.; Poblet, J. M.; Cronin, Nature 2014, 515 (7528), 545–549. (4) Chen, X.; Zhu, X.; Zhang, S.-R.; Pan, J.; Huang, P.; Zhang, C.; Ding, G.; Zhou, Y.; Zhou, K.; Roy, V. A. L.; Han, S.-T. Adv. Mater. Technol. 2019, 4 (3), 1800551. (5) Huez, C.; Guérin, D.; Lenfant, S.; Volatron, F.; Calame, M.; Perrin, M. L.; Proust, A.; Vuillaume, D. Redox- Controlled Conductance of Polyoxometalate Molecular Junctions. Submitted. (6) Laurans, M.; Dalla Francesca, K.; Volatron, F.; Izzet, G.; Guerin, D.; Vuillaume, D.; Lenfant, S.; Proust, A. Molecular Signature of Polyoxometalates in Electron Transport of Silicon-Based Molecular Junctions. Nanoscale 2018, 10 (36), 17156–17165. https://doi.org/10.1039/C8NR04946G. (7) Laurans, M.; Trinh, K.; Dalla Francesca, K.; Izzet, G.; Alves, S.; Derat, E.; Humblot, V.; Pluchery, O.; Vuillaume, D.; Lenfant, S.; Volatron, F.; Proust, A. Covalent Grafting of Polyoxometalate Hybrids onto Flat Silicon/Silicon Oxide: Insights from POMs Layers on Oxides. ACS Appl. Mater. Interfaces 2020, 12 (42), 48109–48123. https://doi.org/10.1021/acsami.0c12300. 13
Molecular Electronics with Organometallic Complexes as Wires and Switches Stéphane Rigaut Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS - Université de Rennes 1, Rennes, 35042, France E-mail : stephane.rigaut@univ-rennes1.fr Abstract: Carbon-rich ruthenium complexes have been involved in the building of original redox-active molecular wires, owing to their excellent ability to promote a strong electronic coupling between the metal centers and the conjugated ligands, as well as for their fast electron transfer dynamics associated to discrete oxidation events at low potentials. Such complexes as well as their combinations with carefully chosen functional units also lead to original architectures for molecular electronics. In this presentation, we will give an overview of our achievements in this domain, such as the association of dithienylethene units with the ruthenium(II) complexes that affords materials that gather efficient and suitable photo/electrochromism to achieve unique switchable multifunctional nanodevices. References: 1 F. Meng, Y.-M. Hervault, L. Norel, K. Costuas, C. Van Dyck, V. Geskin, J. Cornil, H. Hoon Hng, S. Rigaut, X. Chen Chem. Sci. 2012, 3, 3113. 2 F. Meng, Y.-M. Hervault, Q. Shao, B. Hu, L. Norel, S. Rigaut, X. Chen Nat. Commun. 2014, 5:3023. 4 N. Xin, C. Hu, H. Al Sabea, M. Zhang, C. Zhou, L. Meng, C. Jia, Y. Gong, Y. Li, G. Ke, X. He, P. Selvanathan, L. Norel, M. A. Ratner, Z. Liu, S. Xiao, S. Rigaut, H. Guo, X. Guo J. Am. Chem. Soc. 2021, 143, 20811. 5 Z. Xie*, V. Diez Cabanes, Q. Van Nguyen, S. Rodriguez-Gonzalez, L. Norel, O. Galangau, S. Rigaut, J. Cornil, C. D. Frisbie ACS Appl. Mater. Interfaces 2021, 13, 56404. 3 G. Mitra, V. Delmas, H. Al Sabea, L. Norel, O. Galangau, S. Rigaut, J. Cornil, K. Costuas, E. Scheer Nanoscale Adv. 2022, 4, 457. 6 L. Meng, N. Xin, C. Hu, H. Al Sabea, M. Zhang, H. Jiang, Y. Ji, C. Jia, Z. Yan, Q. Zhang, L. Gu, X. He, P. Selvanathan, L. Norel, S. Rigaut, H. Guo, S. Meng, X. Guo Nat. Commun. 2022, 13:1410. 14
Spin filtering effects through graphene/molecules heterostructures Pascal Martin1, Bruno Dlubak2*, Richard Mattana2, Pierre Seneor2, Marie-Blandine Martin2, Théo Henner2,3, Florian Godel2, Anke Sander2, Sophie Collin2, Linsai Chen1, Stéphan Suffit3, François Mallet3, Philippe Lafarge3, Maria Luisa Della Rocca3, Andrea Droghetti4*, Clément Barraud3 1. Université Paris Cité, Laboratoire ITODYS, CNRS, UMR 7086, 75013 Paris, France 2. Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France 3. Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, 75013 Paris, France 4. School of Physics and CRANN, Trinity College, Dublin 2, Ireland We present a bias-controlled spin-filtering mechanism in spin-valves including a hybrid organic chain/graphene interface. Wet growth conditions of oligomeric molecular chains would usually lead, during standard CMOS-compatible fabrication processes, to the quenching of spintronics properties of metallic spin sources due to oxidation. We demonstrate by X-ray photoelectron spectroscopy that the use of a protective graphene layer fully preserves the metallic character of the ferromagnetic surface and thus its capability to deliver spin polarized currents. We focus here on a small aromatic chain of controllable lengths, formed by nitrobenzene monomers and derived from the commercial 4-nitrobenzene diazonium tetrafluoroborate, covalently attached to the graphene passivated spin sources thanks to electroreduction. A unique bias dependent switch of the spin signal is then observed in complete spin valve devices, from minority to majority spin carriers filtering. First-principles calculations are used to highlight the key role played by the spin- dependent hybridization of electronic states present at the different interfaces. Our work is a first step towards the exploration of spin transport using different functional molecular chains. It opens the perspective of atomic tailoring of magnetic junctions’ devices towards spin and quantum transport control, thanks to the flexibility of ambient electrochemical surface functionalization processes. Simulated hybrid heterostructure: Co/graphene/nitrobenzene molecule/Ni References: Martin et al., Nanoscale https://doi.org/10.1039/D2NR01917E (2022) Martin et al., Adv. Quant. Tech. 5, 2100166 (2022) 15
Molecule-Nanoparticle 2D networks for neuro-inspired computing: concepts, results and perspectives. D. Vuillaume Institut d'Electronique, Microélectronique, Microélectronique et Nanotechnologie (IEMN), CNRS, Lille. Email: dominique.vuillaume@iemn.fr 2D networks of molecularly functionalized nanoparticles (NPs) (hereafter called NMN : nanoparticle molecule network) have emerged as an interesting approach in molecular electronics to understand fundamental electron transport mechanisms, as well as to develop potential applications in electronics, sensing and computing circuits.1 They also attracted interests for neuro-inspired computing, especially for the so-called "reservoir computing" (RC) thanks to their intrinsically similar topology and the dynamics of their electronic properties.2-10 Here, I will briefly introduce the concepts underlying the "NMN for RC" approach, and discuss several key features of these NMNs to be used for reservoir computing: highly non-linear electron transport, variability, complex/rich dynamics such as harmonic and interharmonic generations, intermodulation distortion, co-tunneling, noise. I will illustrate these behaviors, discussing the electron transport dynamics of molecules of interest (switch, redox) relating these RC-compatible properties with the molecular states and/or conformations. Molecules will also be presented with perspectives for chemical and biochemical sensing with this NMN-RC approach, combining sensing and computing in a single nanoscale device.11-15 These approaches, without direct analogs in semiconductor nanoelectronics, would open new perspectives to molecular electronics in unconventional computing. 1. J. Liao, S. Blok, S. J. van der Molen, S. Diefenbach, A. W. Holleitner, C. Schonenberger, A. Vladyka and M. Calame, Chem Soc Rev 44, 999-1014 (2015). 2. J. M. Tour, W. L. Van Zandt, C. P. Husband, S. M. Husband, L. S. Wilson, P. D. Franzon and D. P. Nackashi, IEEE Transac$ons on Nanotechnology 1, 100-109 (2002). 3. J. Sköldberg and G. Wendin, Nanotechnology 18, 485201 (2007). 4. V. Beiu, M. Calame, G. Cuniberti, C. Gamrat, Z. Konkoli, D. Vuillaume, G. Wendin and S. Yitzchaik, in AIP conference proceedings 1479, 1875-1879 (2022). 5. S. K. Bose, C. P. Lawrence, Z. Liu, K. S. Makarenko, R. M. van Damme, H. J. Broersma and W. G. van der Wiel, Nat . Nanotechnol. 10, 1048-1052 (2015). 6. H. O. Sillin, R. Aguilera, H. H. Shieh, A. V. Avizienis, M. Aono, A. Z. Stieg and J. K. Gimzewski, Nanotechnology 24, 384004 (2013). 7. W. Maass, T. Natschläger and H. Markram, Neural Computation 14, 2531-2560 (2002). 8. H. Jeager and H. Haas, Science 304, 78-80 (2004). 9. H. Tanaka, M. Akai-Kasaya, A. TermehYousefi, L. Hong, L. Fu, H. Tamukoh, D. Tanaka, T. Asai and T. Ogawa, Nat . Commun. 9, 2693 (2018). 10. Y. Viero, D. Guerin, F. Alibart, S. Lenfant and D. Vuillaume, Adv. Func. Mater. 28, 1801506 (2018). 11. H. Audi, Y. Viero, N. Alwhaibi, Z. Chen, M. Iazykov, A. Heynderickx, F. Xiao, D. Guerin, C. Krzeminski, I. M. Grace, C. J. Lambert, O. Siri, D. Vuillaume, S. Lenfant and H. Klein, Nanoscale 12, 10127-10139 (2020). 12. E. Mervinetsky, I. Alshanski, S. Lenfant, D. Guerin, L. Medrano Sandonas, A. Dianat, R. Gutierrez, G. Cuniberti, M. Hurevich, S. Yitzchaik and D. Vuillaume, J. Phys. Chem. C 123, 9600-9608 (2019). 13. K. Smaali, S. Lenfant, S. Karpe, M. Oçafrain, P. Blanchard, D. Deresmes, S. Godey, A. Rochefort, J. Roncali and D. Vuillaume, ACS Nano 4, 2411-2421 (2010). 14. T. K. Tran, K. Smaali, M. Hardouin, Q. Bricaud, M. Ocafrain, P. Blanchard, S. Lenfant, S. Godey, J. Roncali and D. Vuillaume, Advanced Materials 25, 427-431 (2013). 15. C. Huez, D. Guerin, F. Volatron, S. Lenfant, M.L. Perrin, M. Calame, A. Proust & D. Vuillaume. Nanoscale, Submitted. 16
Functionalized Silicon Surfaces for the Development of Light- Activated Molecular Electronics Devices Bruno Fabre,a Han Zuilhof,b Nuria Crivillers,c Paola Matozzo,a and Jeanne Crassousa a CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Univ Rennes, Rennes F-35000, France. Email: bruno.fabre@univ-rennes1.fr b Laboratory of Organic Chemistry, Wageningen University, Wageningen, The Netherlands c Institut de Ciència de Materials de Barcelona (ICMAB, CSIC), Campus de la UAB s/n, Bellaterra, 081093, Spain Abstract: The functionalization of oxide-free hydrogen-terminated silicon (Si-H) surfaces using the covalent attachment of organic monolayers has received intense attention due to the large extent of potential applications of controlled and robust organic/Si interfaces [1]. Such surfaces have great potential in the field of molecular electronics, photovoltaic devices, and chemical and biological sensing. Unlike metals, the electronic properties of Si can be finely tuned by modifying the density and the nature of the charge carriers (electrons and holes) under light illumination, which can be used as a second gate for the tuning of the properties of the modified surface. In this context, the derivatization of Si-H surfaces with redox-active molecules constitutes a powerful approach to the fabrication of electrically addressable devices, particularly when the goal is integrated systems devoted to molecular-based information storage or transfer. In this presentation, we will show some significant results obtained in this thematic area by our group in collaboration with our French and European partners. In particular, we have demonstrated that tailor-made micrometer-sized patterns of bistable ferrocenyl monolayers bound to Si(111)-H could behave as light-activated molecular memory cells operating at low voltages with outstanding capacitance performance (Fig. 1a) [2]. On the other hand, the functionalization of Si–H with a redox- active persistent organic radical, namely perchlorotriphenylmethyl PTM radical, allows a light- triggered capacitance switch to be successfully achieved under electrochemical conditions (Fig. 1b) [3]. Finally, some recent preliminary results about the covalent grafting of chiral helicene molecules show great promises for the development of molecular interfaces for spin filtering (Fig 1c,d) [4]. a Figure 1. a) Ferrocene-micropatterned silicon surfaces for all-solid AND molecular logic gate using the capacitance response as the output signal. b) PTM radical- and (c,d) chiral helicene-functionalized Si(111) surfaces. References: [1] Fabre, B. Chem. Rev. 2016, 116, 4808-4849. [2] Fabre, B.; Li, Y.; Scheres, L.; Pujari, S. P.; Zuilhof, H. Angew. Chem. Int. Ed. 2013, 52, 12024-12027. [3] de Sousa, J. A.; et al., Chem. Sci. 2020, 11, 516-524. [4] Fabre, B.; Crassous, J.; Matozzo, P.; Leroux, Y. in preparation. 17
Switchable spin-crossover molecular junctions Margaux Pénicaud, Rebecca Rodrigues de Miranda Elizabeth Hillard, Mathieu Gonidec and Patrick Rosa CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, Pessac, France. Email: mathieu.gonidec@icmcb.cnrs.fr Abstract: Spin-crossover compounds, due to their switchable spin state, are targets of high interest for the development of switchable molecular electronic and spintronic devices. Measuring molecular thin- films based junctions is highly challenging, due to the fragile nature of both the films themselves and the spin transition phenomenon. We will present our work with spin crossover complexes of the Fe(II) scorpionate family on junctions made with both evaporated thin films and self-assembled monolayers. We will show, in particular, that it is possible to obtain high-quality thin films of SCO compounds, and that – unlike evaporated top contacts, that are potentially damaging to nanometric molecular thin films and rigid enough to inhibit the SCO – EGaIn junctions provide a convenient, reliable way to probe the properties of such ultra-thin molecular films. In particular, we will show that in our ultra-thin switchable spin crossover vertical tunnel junctions, the reversible temperature- driven spin crossover persists at the nanoscale, and induces significant changes in the tunneling current density flowing through the junction. Those results on large-area junctions demonstrate the high potential of SCO-based switchable molecular junctions for molecular spintronics. Figure 1 Self-assembled mono-layer of TS [Fe(H2B(pz)2)2(bipy-alcanethiol)] on Au References: [1] L. Poggini et al., Adv. Electron. Mater. 2018, 4, 1800204. [2] L. Poggini et al., J. Mater. Chem. C 2019, 7, 5343. [3] G. Cucinotta et al., ACS Appl. Mater. Interfaces 2020, 12, 31696. 18
Quantum information encoding & Energy harvesting using molecular spintronics Martin Bowen, Wolfgang Weber, Samy Boukari, Benoit Gobaut, Loïc Joly, Victor Da Costa, Christophe Kieber, Jérémy Thoraval IPCMS, UMR 7504 CNRS-UdS,23 rue du Loess BP 43, 67034 Strasbourg, France Email: bowen@unistra.fr Abstract: The IPCMS’s ‘Hybrid Spintronics’ team works on integrating quantum nanoobjects within industrializable spintronic devices, toward ICT and energy applications (see www.spinengine.tech). These nanoobjects are functional molecules, or even oxygen vacancies within the device’s tunnel barrier. This requires A) fundamental studies, e.g. on spin-crossover1 or ferroelectric2 molecules; and e.g. on the emergent properties at the ferromagnetic metal/molecule interface, also called the spinterface. According to our spectroscopy3 and spin-polarized transport4,5 experiments, this interface’s electronic states can be described as a quantum dot4 with high transport spin polarization at 300K and non-thermal bath properties5. A second requirement B) is to develop technical advances at the junction between model, lab-only single-molecule devices (STM, lateral junctions), and macrojunctions defined by shadowmasks. To do so, the team develops and operates an innovative research chain that comprises: 1) tools to UHV grow and characterize metal/molecule heterostructures; 2) technologies to make spintronic nanopillar devices; 3) electrical measurements benches under external stimuli (temperature, magnetic field, light). The team also uses synchrotron radiation to probe the electronic properties of these heterostructures, and to test devices in operando1. We developed a novel nanotechnological process6 (collaborations welcome) that crafts full metal/molecule heterostructures into vertical nanojunctions. We used it to study spin-polarized transport across a molecular spin chain. Electrically exciting the spin chain from its quantum ground state generates a specific magnetoresistance signal6. We also used it to extend our research4 into harvesting the thermal energy of paramagnetic fluctuations using spintronics and quantum thermodynamics7. Here, CoPc molecules form the quantum spintronic engine’s working substance as it electronically interacts with Fe/C60 spinterfaces with a high transport spin polarization. Quantum assets and the fast spinterface-based stroke enable static current generation5. References: 1. Schleicher, F. Linking Electronic Transport through a Spin Crossover Thin Film to the Molecular Spin State Using X‑ ray Absorption Spectroscopy Operando Techniques. ACS Appl. Mater. Interfaces 10, 31580 (2018). 2. Mohapatra, S. et al. Organic ferroelectric croconic acid: a concise survey from bulk single crystals to thin films. Journal of Materials Chemistry C (2022) doi:10.1039/D1TC05310H. 3. Djeghloul, F. et al. High Spin Polarization at Ferromagnetic Metal-Organic Interfaces: a Generic Property. J. Phys. Chem. Lett. 7, 2310–2315 (2016). 4. Katcko, K. et al. Spin-driven electrical power generation at room temperature. Communications Physics 2, 116 (2019). 5. Chowrira, B., Kandpal, L. & et al. Quantum advantage in a molecular spintronic engine that harvests thermal fluctuation energy. arXiv:2009.10413. 6. Katcko, K. et al. Encoding Information on the Excited State of a Molecular Spin Chain. Advanced Functional Materials 2009467 (2021) doi:10.1002/adfm.202009467. 7. Bresque, L. et al. Two-Qubit Engine Fueled by Entanglement and Local Measurements. Phys. Rev. Lett. 126, 120605 (2021). 19
Matériaux & Ingénierie moléculaire : de la molécule unique au dispositif Saioa Cobo Univ. Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France Laboratoire de Chimie de Coordination, LCC UPR 8241, F- 31077 Toulouse, France saioa.cobo@univ-grenoble-alpes.fr or saioa.cobo@lcc-toulouse.fr L’utilisation des molécules photochromes comme composants actifs dans le domaine de l’électronique moléculaire1 apparait comme une des solutions les plus simples et attrayantes : en effet, la commutation photo induite à l’échelle moléculaire permet d’entrevoir des systèmes ultra rapides, non fatigables et facilement adressables. Dans ce contexte, différentes familles de composés photochromes ont été utilisées dans des jonctions moléculaires dans le but d’étudier leurs propriétés électriques. De telles jonctions peuvent être préparées à l’échelle de la molécule unique ou en forme des films et étudiées par diverses techniques comme la MCBJ (Molecular Controlled Break Jonction) ou le C-AFM (conductive AFM).2 Au cours de cette présentation, je me focaliserai sur le processus préparatif de ces objets, depuis la synthèse rationnelle des molécules jusqu’à la construction des jonctions moléculaires à travers divers exemples tirés de la littérature et des travaux de l’équipe. 1 (a) V. Balzani, M. Venturi, A. Credi, Molecular Devices and Machines, Wiley-VCH: Weinheim, 2008 ; (b) B. L. Feringa, W. R. B., Molecular Switches: Second, Completely Revised And Enlarged Edition. Wiley-VCH Verlag GmbH & Co. KGaA 2011.(a) Irie, M., Chemical Reviews 2000, 100 (5), 1685; (b) S. Kawata, Y. Kawata, Chem. Rev. 2000, 100, 1777; (c) S. Saha, J. F. Stoddart, Chem. Soc. Rev. 2007, 36, 77. 2 (a) I. Hnid, A. Grempka, A. Khettabi, X. Sun, J-C Lacroix, F. Lafolet*, and S. Cobo*, J. Phys. Chem. C, 2020, 124, 26304; (b) A. Bakkar, F. Lafolet, D. Roldan, E. Puyoo, D. Jouvenot, G. Royal, E. Saint-Aman, S. Cobo, Nanoscale 2018, 10, 5436; (c) D. Roldan, V. Kaliginedi, S. Cobo, V. Kolivoska, C. Bucher, WJ. Hong, G. Royal, T. Wandlowski, J. Am. Chem. Soc., 2013, 135, 5974; (d) U. Rashid, E. Chatir, S. Medrano, L. Sandonas, PA Sreelakshmi, A. Dianat, R. Gutierrez, G. Cuniberti, S. Cobo, V. Kaliginedi, submitted; (e) C. Xu, J. Zhang,W. Xu, H. Tian Mater. Chem. Front., 2021,5, 1060-1075 ; (f) K. Uchida, Y. Yamanoi, T. Yonezawa, H. Nishihara J.Am.Chem.Soc.2011, 133, 9239–9241; (g) J. M. Mativetsky, G. Pace, M. Elbing, M.- A. Rampi, M. Mayor, P. Samorì, J. Am. Chem. Soc. 2008, 130, 29, 9192–9193; (h) Y. Seong Hoon, A.H. Syed, N. Geon-Hee, A. Sanghyeok, K. Boseok, and C. Dae Sung, Chem. Mater. 2021, 33, 5991−6002 20
New TADF emitters based on pyridazine for OLEDs applications Haixia LI,a David KREHER,a,b Lydia SOSA-VARGAS,a Fabrice MATHEVET,a,c Chihaya ADACHI c a Institut Parisien de Chimie Moléculaire (UMR 8232), Sorbonne Université, 4 place Jussieu, 75005 Paris, France ; david.kreher@uvsq.fr b Institut Lavoisier de Versailles (UMR8180), Université de Versailles Saint Quentin (Université Paris-Saclay), 45 Avenue des États-Unis, 78000 Versailles, France c Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan Abstract: As a new kind of a flat emitting technology, organic light-emitting diodes (OLEDs) show many improvements over liquid crystal displays (LCDs) with impressive advantages. In this context, compounds with thermally activated delayed fluorescence (TADF) properties are outstanding from their special emitting mechanism which can harvest excitons of triplet state to obtain high photoluminescence quantum yield (PLQY). Due to its advantages of heavy metal free, high efficiency, long lifetime, TADF materials have triggered a new insight into third generation organic semiconductors for OLED application. Regarding this work, several molecules of the Donor-Acceptor (DA) and / or DAD type incorporating various electro-deficient nitrogenous hearts (pyridazine, pyridine, bipyridine, bipyridazine) have been successfully prepared, their design being designed with the aim of obtaining TADF (Thermally Activated Delayed Fluorescence) emitters. Among them, pyridazine based chemical structures have been characterized by nuclear magnetic resonance (NMR) and high-resolution mass spectroscopy (HRMS). Their photophysical properties have been studied in solution and in the solid state. In these structures, intramolecular charge transfer is produced via intermolecular interactions between the D and A groups, and their study revealed that some of them exhibit a TADF character. The electroluminescence properties of the most promising compounds have also been studied in OLED configuration. Electroluminescence performance- 10 wt% Ac-PDCN doping in DPEPO Ac-PDCN PLQY : 60% in toluene; 44% in doped DPEPO film Energy level diagram of OLED device 21
Nanostructuration of nitrogen dopants in graphene with a submonolayer molecular resist to form sharp junctions M. Bouatoua, C. Chacona, A. Bach Lorentzenb, H. T. Ngoa, Y. Girarda, V. Repaina, A. Belleca, S. Rousseta, M. Brandbygeb, Y. J. Dappec and J. Lagoutea a Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS, Université Paris Diderot, Paris, France b Center for Nanostructured Graphene, Technical University of Denmark, Denmark c SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, France Abstract: Tailoring the properties of graphene is of fundamental interest to uncover new functionalities and open new opportunities for graphene based applications. Among the strategies explored to achieve this goal, substitutional doping and molecular functionalization has focused tremendous efforts. In this context, nitrogen doping obtained by replacing some carbon atoms by nitrogen atoms appears to be particularly interesting as it allows to perform n-doping with minor structural perturbations [1]. This chemical doping can modify the interaction of graphene with organic molecules through local charge transfer, as it has be revealed using scanning tunneling microscopy (STM) and spectroscopy [2,3,4]. A promising perspective opened up by the chemical doping of graphene is the realization of band engineering. However, one challenge to overcome is the control the spatial distribution of dopants. We have shown recently that a nanopatterning of nitrogen dopants can be achieved by using monolayer islands of C60 as a resist during the doping procedure [5]. This method leads to the formation of a large collection of junctions between two domain of different nitrogen concentration on a sample, that can be easily addressed by STM. The electronic properties of the junctions have been measured at the atomic scale. In particular, the evolution of the Dirac point along the junction makes it possible to measure the width of the space charge region (Figure 1) which appears to be smaller than the Fermi wavelength. Figure 1: (a) 3D representation of a monolayer resist used to achieve nanodomains of different concentration of nitrogen dopants in graphene. (b) STM topography color code with a differential conductance map showing the variation of the Dirac point on a junction between two domains of different nitrogen concentration in graphene. (c) Linescan of the conductance map used in (b) showing the variation of the Dirac point across the jun ction. References: [1] F. Joucken, L. Henrard and J. Lagoute, Phys. Rev. Materials 3, 110301 (2019) [2] V. D. Pham et al., ACS Nano 8, 9403 (2014) [3] V. D. Pham et al., npj 2D Materials and Applications 3, 5 (2019) [4] M. Bouatou et al., Nano Lett., 20, 6908 (2020) [5] M. Bouatou et al., Adv. Funct. Mater. (2022) (accepted) 22
Manipulating Molecules with Electrons: From Machines to Responsive Soft Materials Floris Chevallier, Denis Frath, Christophe Bucher Laboratoire de Chimie, UMR 5182 / CNRS-ENS Lyon-Université Lyon 1 Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07-France Email:christophe.bucher@ens-lyon.fr The ability to control the structure and properties of molecular materials has emerged in the past decade as a major scientific objective that is mainly motivated by exciting foreseeable applications in nanoscience. Enormous technologic interests are for instance at stake in being able to devise molecular objects that could respond to external stimuli by changes in structure and function. To achieve these objectives, our group has been focusing over the past few years on the development of tailor-made electron-responsive molecular or supramolecular systems involving metal ions and electrogenerated organic -radicals as key responsive and/or assembling elements. Our contribution in this area ranges from the development of discrete rotor-or tweezer-like molecules to supramolecular assemblies whose mechanical movements or whose macroscopic properties can be controlled by electrical stimuli. In this presentation, we will detail different facets of this multidisciplinary activity at the interface of chemistry and physics which is based on a broad expertise ranging from organic chemistry and molecular (spectro)electrochemistry to materials science. 23
Vous pouvez aussi lire