Space Systems Dependability Industrial Challenges - Jean-Paul Blanquart ASTRIUM Satellites
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
Space Systems Dependability Industrial Challenges Jean-Paul Blanquart ASTRIUM Satellites Jean-paul.blanquart@astrium.eads.net ETR - 2013 Toulouse, France, 26-30/8/2013
Outline Dependability in space Constraints, needs, solutions, achievements Dependability (FDIR) process Model Based Dependability Engineering, Assessment Why it may become so complicated? ETR – 2013 – Toulouse, France, 26-30/8/2013
Space systems: Constraints Limited mass, power Limited ground-board link Limited maintenance Radiations Knowledge, mastering of the environment Phased missions, critical parts Long lifetime ETR – 2013 – Toulouse, France, 26-30/8/2013
A large variety of dependability needs Reliability Lifetime (satellites, space probes) Continuity of service (launchers, rendez-vous, re-entry) Availability Instantaneous (satellite, probes critical phases, launchers) Average (Mission return) Outage duration, frequency (critical or expensive services) Maintainability, adaptation (reconfiguration, software, procedures) Safety (Launchers, manned flights, rendez-vous, end of life) Security ETR – 2013 – Toulouse, France, 26-30/8/2013
Solutions, basic principles Selective redundancy, hot or more often cold duplex Some notable examples of comparison and vote Automatic detection and reconfiguration (FDIR) Safe mode “Favourite” adversaries Single point of failures, common cause failures, failure propagation Unpredicted situations, lack of observability, controllability ETR – 2013 – Toulouse, France, 26-30/8/2013
Classical satellite architecture typically 1 or 2 Interface payload Remote Other Computer RIU PIU PIU TM SCU A TC Ire Gyp s TM SCU TC B Mil-STD 1553B bus GPS Sun Sensor PPU PSR MW-X sensor4 ADE CPS Ion thrusters SADM Batteries 2*7 Thrusters Mechanisms Solar Arrays ETR – 2013 – Toulouse, France, 26-30/8/2013
Computer failure (cold duplex) Senseur Mémoire contexte Nœud Nœud (off) autotests on/off autotests Présence MRE Terre commutatio Actuateur ETR – 2013 – Toulouse, France, 26-30/8/2013
Launcher (Ariane 5) OBC1 inter-computers OBC2 (Master) alarm link (Backup) Remote Remote unit 1 unit 1 Hot-Duplex, (nominal) (backup) semi-cross-strapped, SdC one-shot (Mil. Std. 1553B) Remote Remote unit n unit n (nominal) (backup) Umbilical to launchpad + Safety ETR – 2013 – Toulouse, France, 26-30/8/2013
Manned automatic vehicles (projects) Communication Busses RT RT MIOP NAP RT RT RT RT RT RT GNC1 GNC2 GNC3 Alimentation SIORP BC IPC BC IPC BC IPC BAP BC IPC GNC4 USR IPN RT/OBS Reset / Alimentation Bfin TM1 TM2 BFin Reset / Alimentation GNC1 Bus GNC2 Bus GNC3 Bus GNC4 Bus OBC 1 OBC 2 BFout1 BFout2 Contrôle commande RT/OBS Contexte / Reprise BC 1553 ETR – 2013 – Toulouse, France, 26-30/8/2013
ATV (Automatic Transfer Vehicle) ATV CORE ATV CARGO RUSSIAN SEGMENT BUSES Propulsion FTC 1 FTC 2 FTC 3 Drive Gyros Earth Rendez-vous Electronics Sensors Sensors SYSTEM BUSES VTC CMU CMU MSU S UHF Power GPS CMU Band Distr. US SEGMENT BUSES to CMUs Equipment SENSORS Measurement & Command Sun ACTUATORS Sensors Launch Pad i/f BUSES ETR – 2013 – Toulouse, France, 26-30/8/2013
ATV Fault Tolerant Computer Avionics System Bu s A Avionics System Bus B Avionics S ystem Bus C A vionic s System Bus D ALB FML DPU1 DPU2 DPU3 AVI DPU4 ETR – 2013 – Toulouse, France, 26-30/8/2013
Indicative values, from public data (up to 2005) No pretention as strongly substantiated statistics And it works… Launchers 10% Propulsion 100.0 13% Command 90.0 39% 80.0 Structure Success rate 70.0 3% 60.0 Power 50.0 6% 40.0 30.0 Separation 20.0 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 Explosion 29% Launches 10 year mean Mean (90.7%) Satellites 9% “~10-6/h” 2xlifetime, 90%> 4% 20% Propulsion But: Command Launch: 6-7% Mechanical In-orbit installation: 4-5% 25% Power 20% Early phase: 1.5 10-6/h Life: 0.5 10-6/h Deployment Environment 22% ETR – 2013 – Toulouse, France, 26-30/8/2013
Outline Dependability in space Constraints, needs, solutions, achievements Dependability (FDIR) process Model Based Dependability Engineering, Assessment Why it may become so complicated? ETR – 2013 – Toulouse, France, 26-30/8/2013
Dependability process (FDIR) REQUIREMENTS • One Failure tolerant design Events • R(t) ≥ 0,8 HW ? SW ? GCC ? • D(t) ≥ 0,99 • Autonomy … •… NORMAL MODE SAFE MODE Events GS DRU Rech_pf_y TH/Rech_cu Events Batterie Alimentation TX_B IF_1553 - CV_DRU_y MSI_y TX_A 1553_cu HW ? SW ? RX_A DCU_A TTR_A OBMU SW ? PM_x RX_B DCU_B TTR_B 1553_int GCC? TX_B IOS_y IOT_y TX_A MAG_y CSS_y MTQ_y RS_y TH_pf_y GCC? FDIR Failures Management - DETECTION • REQUIREMENTS How ? Which parameters ? Frequency ?... • ARCHITECTURE - ISOLATION Events Protections, Time to react ?... • Modes versus “failures” HW ? SW ? GCE ? - RECOVERY • HIERARCHY Which actions ? Who executes ? … • FD/I/R Management GCC: Ground Control Centre ETR – 2013 – Toulouse, France, 26-30/8/2013
FDIR analysis RAMS_001 « Every failure likely to propagate shall be detected in appropriate time in order REQUIREMENTS to avoid propagation to another reliability block (as defined in teh reliability block diagram) » RAMS_051 « Every failure with criticality 1 shall trigger a safe mode » FDIR NORMAL MODE SAFE MODE T DTC XS MVTHI XS REFT 8Hz REFT 8Hz STRATEGY BAS-VIS RA-E RA GS DRU Rech_pf_y TH/Rech_cu DTC PAN MVTHI PAN OBC FCL (LEON 3) PPS Equerre I/F OMUX Batterie Alimentation 8PSK 8PSK 8PSK 8PSK Dét. IRM MEP IRM BEV TX_B IF_1553 - CV_DRU_y MSI_y BEV et IRT MEP IRT TMI-CDC TC-CDC TMS- CDC 1553_cu FCL TX_A LPTC LPTC EDR COME REFT RX_A DCU_A TTR_A OBMU RIU CTAinst. CTA inst. PM_x MSI Corps noir CTA inst. REFT 8Hz RX_B DCU_B TTR_B 1553_int (calibration) Mecalib T TX_B T T IOS_y IOT_y TX_A REFT 32Hz REFT 32Hz REFT 16Hz PPS FCL (Rx) CMG-E TBS A/B Thermistances CMG-E CMG-E (Rx en red. chaude) (AD) FOG-E A FOG-E B SST-E NAV CMG-E GS Coupleur 3dB Réchauffeurs 2 x 32 (AC) PCDU GS FOG-O FOG-O SST-O ANAV MAG_y CSS_y MTQ_y RS_y TH_pf_y RMU ABS ABS GS SSG Nadir Zenith GS CMG-M MAC MAG (3 axes) BAT (Li-Ion) Propulsion (2 branches de 8 tuyères 1N) TC Eqt BF FM Fonction Dysfonctionnement Effet Local Effets système N A Recommandations TM Maîtrise G C Remarques 3 1 1 CTA_BUS_RECH c/o réchauffeur Absence activation d'un Fonction contrôle thermique erronée T° ligne i 2= SURVEILLANCE 1 R SUR C= la surveillance comporte un -Activer les réchauffeurs du réchauffeur Poinst localements froids (6 lignes affectées) LVC#XX : Comparaison mesure- seuil haut et un seuil bas contrôle thermique LVC#XX : Comparaison mesure-commande commande C= 2 cartes RECH_N et RECH_R Procédure LVC : SYS_ARO en redondance froide dans boîtier F / D / I / R Passage en mode SAT_SAF 3= SOL PCDU (x2) DESIGN Disponibilité affectée Possibilité d'utiliser la carte RECH_B 3 1 2 CTA_BUS_BUS_RECH c/c réchauffeur MEO protection électrique Fonction contrôle thermique erronée T° ligne i, j, k 2= SURVEILLANCE 1 R SUR C= la surveillance comporte un -Activer les réchauffeurs du PCDU LCL groupe de 6 Poinst localements froids (6 lignes affectées) … LVC#49 : Comparaison mesure- seuil haut et un seuil bas contrôle thermique pertes de 6 réchauffeurs LVC#XX : Comparaison mesure-commande commande C= 2 cartes RECH_N et RECH_R Procédure LVC : SYS_ARO en redondance froide dans boîtier Passage en mode SAT_SAF 3= SOL PCDU (x2) Disponibilité affectée Possibilité d'utiliser la carte RECH_B 4 1 1 CT_BUS_TH Informations capteurs Paramètres Thermistances Aucun effet au permier ordre R= Evaluer la possibilité de T° ligne i 1= PROTECTION 1 R P C= ES_A reçoit TH_A, TH_C -Fournir les TH canal 1 du erronées (ES_A) erronés voie A ou voie B Vote majoritaire poursuivre la mission quelle Vote majoritaire (2/3) C= ES_B reçoit TH_B contrôle thermique que soit lles lignes TH C= le vote majoritaire permet affectées d'éviter une reconfiguration et R= Statuer sur permet de tolérer des pannes programmation du CTA en croisées sur différentes lignes mode survie 4 1 2 CT_BUS_TH Informations capteurs Paramètres Thermistances Aucun effet au permier ordre R= Evaluer la possibilité de T° ligne i 1= PROTECTION 1 R P C= ES_A reçoit TH_A, TH_C -Fournir les TH canal 1 du erronées (ES_B) erronés voie A Vote majoritaire poursuivre la mission quelle Vote majoritaire (2/3) C= ES_B reçoit TH_B contrôle thermique que soit lles lignes TH C= le vote majoritaire permet affectées d'éviter une reconfiguration et R= Statuer sur permet de tolérer des pannes programmation du CTA en croisées sur différentes lignes mode survie 6 1 1 MAGNETOMETRE Acquisitions Mesures champ magnétique SAT_NOM: Magnétomètre n/u X MNL: Erreur 2= ERREUR REPORT 3 R C= Magnétomètre utilisé -Mesurer le champ magnétomètre bloquées inutilisables LVC#XX : Sorties MAG bloquées report LVC#XX : Sorties MAG uniquement en mode ASH (survie magnétique terrestre sur les 3 Bx, By, Bz (0, …) Erreur report ASH: bloquées et première acquisition) axes Bx, By, Bz ASH : Bx, By, Bz pour calcul loi Bpoint Reconfiguration C= Magnétomètre redondé perte des fonctions : Mesures de champ magnétique automatique ACQUISITION/ASH C= surveillance magnétomètre Mode ASH erroné SURVIE 2= SYS_ARO entraîne erreur report en MNL Non convergence STAB LVC#XX : Sorties MAG (information sol uniquement) RAMS_101 « An electrical protection shall protect the spacecraft from any short-circuit down-stream » LVC#XX : Sorties MAG bloquées Procédure LVC : SYS_ARO Pass bloquées RAMS_151 « In order to detect ASH control failure during stabilization phase, the OBSW shall monitor the duration of the stabilization phase. Triggering of this surveillance shall lead to ARO. (URD.AOCS.ASH.FDIR.0100) V&V ETR – 2013 – Toulouse, France, 26-30/8/2013
FDIR lifecycle System Specification Functional FDIR FDIR REPORT REPORT • Lifetime Functional •• FDIR FDIR design design • Reliability target Analysis Analysis •• … … • Availability target • Failure events • Autonomy • Failure tolerance level Risk Risk Contingency Contingency • design rules Analysis Analysis Analysis Analysis •… FDIR FDIR TESTING TESTING •• Test Test Spécifications Spécifications FDIR FDIR POLICY POLICY •• Redundancy Redundancy FMECA_1 FMECA_4 •• Architecture FMECA_1 FMECA_4 Architecture (Functional) (consolidated) •• FDIR FDIR Management Management (Functional) (consolidated) •• Operational Operational Modes Modes •• Feared Feared Events Events FMECA_3 FMECA_3 FDIR FDIR VERIFICATION VERIFICATION (HSIA) (HSIA) •• FDIR FDIR Report Report 11 FDIR •• REVIEWS FDIR DESIGN DESIGN REVIEWS •• FDIR FDIR Policy Policy (detailed) (detailed) •• Monitoring Monitoring FMECA_2 FMECA_2 •• Recovery Recovery •• Requirements (Detailed) (Detailed) Requirements Sub’s Sub’s SPECIFICATION SPECIFICATION Sub’s Sub’s DESIGN DESIGN •• Failure Failure tolerance tolerance •• Monitoring Monitoring •• … … •• FMECA FMECA MONITORING MONITORING // RECOVERY RECOVERY SW SW DESIGN DESIGN •• SSS SSS // SRS SRS (SW) (SW) inputs inputs •• Design Design Report Report •• System System database database inputs inputs ETR – 2013 – Toulouse, France, 26-30/8/2013
Outline Dependability in space Constraints, needs, solutions, achievements Dependability (FDIR) process Model Based Dependability Engineering, Assessment Why it may become so complicated? ETR – 2013 – Toulouse, France, 26-30/8/2013
Types of models (for dependability) determined by the objectives Quantitative (probabilistic) analysis of RAMS properties Modelling the impact of faults/failures on the level of performance Markov, RBD, … Qualitative analysis of faults/failures propagation Modelling the impact and propagation of faults/failures on on the architecture (physical, functional, …) Structural models, AADL, … Assessment (correctness, performance) of FDIR Modelling the behaviour of the FDIR State machines, temporised automata, model-checking, … Soundness, completeness of the safety, dependability arguments Modelling the dependability and safety argumentation Logical formulas, GSN, … ETR – 2013 – Toulouse, France, 26-30/8/2013
Main types of dependability models Behaviour (in presence of faults) Needs for an appropriate abstraction of the behaviour Behaviour of the system (functional, « dys-functional ») Behaviour of the fault processing mechanisms Assembly of functional blocks (on, off, failed, …) Architecture and fault propagation Explicit representation of fault propagation, with an abstraction of the behaviour Coupling behavioural and structural models At least for FDIR mechanisms Impact of faults on behaviour Impact of reconfigurations on behaviour ETR – 2013 – Toulouse, France, 26-30/8/2013
Quite an old story Fault Trees with limitations and solutions node myComponent Command Loss flow 2.8 1e-9 output : {nominal , failed} : out ; state status : {nominal , failed} ; Prim. Command Sec. Command event Loss Loss fail; init status := nominal ; trans gonio2 gonio1 gyro1 sun1 sun2 Eqt BF FM Fonction Dysfonctionnement Effet Local Effets système N A Recommandations TM Maîtrise G C Remarques status=nominal |− fail −> status := failed ; 3 1 1 CTA_BUS_RECH c/o réchauffeur Absence activation d'un Fonction contrôle thermique erronée T° ligne i 2= SURVEILLANCE 1 R SUR C= la surveillance comporte un -Activer les réchauffeurs du réchauffeur Poinst localements froids (6 lignes affectées) LVC#XX : Comparaison mesure- seuil haut et un seuil bas contrôle thermique LVC#XX : Comparaison mesure-commande commande C= 2 cartes RECH_N et RECH_R Procédure LVC : SYS_ARO en redondance froide dans boîtier Loss Loss Loss Loss Loss Passage en mode SAT_SAF 3= SOL PCDU (x2) assert 3 1 2 CTA_BUS_BUS_RECH -Activer les réchauffeurs du c/c réchauffeur MEO protection électrique PCDU LCL groupe de 6 Disponibilité affectée Fonction contrôle thermique erronée Poinst localements froids (6 lignes affectées) T° ligne i, j, k … Possibilité d'utiliser la carte RECH_B 2= SURVEILLANCE LVC#49 : Comparaison mesure- 1 R SUR C= la surveillance comporte un seuil haut et un seuil bas output=status ; 1e-4 1e-4 1e-4 contrôle thermique pertes de 6 réchauffeurs LVC#XX : Comparaison mesure-commande Procédure LVC : SYS_ARO Passage en mode SAT_SAF Disponibilité affectée 1e-4 1e-4 commande 3= SOL Possibilité d'utiliser la carte C= 2 cartes RECH_N et RECH_R en redondance froide dans boîtier PCDU (x2) RECH_B 4 1 1 CT_BUS_TH Informations capteurs Paramètres Thermistances Aucun effet au permier ordre R= Evaluer la possibilité de T° ligne i 1= PROTECTION 1 R P C= ES_A reçoit TH_A, TH_C -Fournir les TH canal 1 du erronées (ES_A) erronés voie A ou voie B Vote majoritaire poursuivre la mission quelle Vote majoritaire (2/3) C= ES_B reçoit TH_B contrôle thermique que soit lles lignes TH C= le vote majoritaire permet affectées d'éviter une reconfiguration et R= Statuer sur permet de tolérer des pannes programmation du CTA en croisées sur différentes lignes mode survie 4 1 2 CT_BUS_TH Informations capteurs Paramètres Thermistances Aucun effet au permier ordre R= Evaluer la possibilité de T° ligne i 1= PROTECTION 1 R P C= ES_A reçoit TH_A, TH_C -Fournir les TH canal 1 du erronées (ES_B) erronés voie A Vote majoritaire poursuivre la mission quelle Vote majoritaire (2/3) C= ES_B reçoit TH_B contrôle thermique que soit lles lignes TH C= le vote majoritaire permet affectées d'éviter une reconfiguration et R= Statuer sur permet de tolérer des pannes programmation du CTA en croisées sur différentes lignes mode survie 6 1 1 MAGNETOMETRE Acquisitions Mesures champ magnétique SAT_NOM: Magnétomètre n/u X MNL: Erreur 2= ERREUR REPORT 3 R C= Magnétomètre utilisé -Mesurer le champ magnétomètre bloquées inutilisables LVC#XX : Sorties MAG bloquées report LVC#XX : Sorties MAG uniquement en mode ASH (survie magnétique terrestre sur les 3 Bx, By, Bz (0, …) Erreur report ASH: bloquées et première acquisition) axes Bx, By, Bz ASH : Bx, By, Bz pour calcul loi Bpoint Reconfiguration C= Magnétomètre redondé perte des fonctions : Mesures de champ magnétique automatique ACQUISITION/ASH C= surveillance magnétomètre Mode ASH erroné SURVIE 2= SYS_ARO entraîne erreur report en MNL Non convergence STAB LVC#XX : Sorties MAG (information sol uniquement) LVC#XX : Sorties MAG bloquées bloquées Procédure LVC : SYS_ARO Pass AltaRica Markov Chains Mu Mu AADL GSPN Mu Cf. Ana-Elena Rugina PhD, 2007 ETR – 2013 – Toulouse, France, 26-30/8/2013
Main advantages Support to model creation, discussion, validation Additional capabilities (property validation, …) Easier updates Coupling with other models Could/should we go further? What about correctness of fault tolerance mechanisms? ETR – 2013 – Toulouse, France, 26-30/8/2013
Objectives & Constraints Need: Model the system dynamics in the presence of faults Define a modelling technique Express faults and failures propagation Specify Fault, Detection, Isolation and Recovery mechanisms Demonstrate properties on Dependability/FDIR Appropriate modelling languages & tools ETR – 2013 – Toulouse, France, 26-30/8/2013
Requirements on modelling techniques (1/2) Function Deployment on resources Resource Function Functional dependencies Function Resource Spread FDIR functions Recover Detect FDIR Hierarchy Resource Functional & Dysfunctional FDIR time constraints Detect Recover FDIR Delegate ETR – 2013 – Toulouse, France, 26-30/8/2013
Requirements on modelling techniques (2/2) Design objectives Validation objectives • Simple (compositional) modelling method • Demonstration • Close to the engineering model Architecture/Behaviour (AADL) Deployment on resources Transformation Functional dependencies Timed automata (UPPAAL) Spread FDIR functions FDIR Hierarchy Time constraints ETR – 2013 – Toulouse, France, 26-30/8/2013
Modelling method – Dependability pattern FDIR MODELS Transient/ Permanent FAULT event MODELS Confirmation idle recovery Fault Fault FAULT alteration PROPAGATION detection MODELS recovery firing Degradation Error Failure Nominal Recovery mode Failure Failure Failure mode FAILURE mode Nominal Nominal mode MODELS mode mode Recovery Degraded Nominal mode mode ETR – 2013 – Toulouse, France, 26-30/8/2013
Modelling method FDIR F4 :Data1 absent => {Data/ absent/…} f4 fm4 F4 f5 fm5 F5 f4: => {resource/processor/computing/…} F12 F11 F3 F1 : total loss of computing power fm2 F0 fm3 => {resource/processor/computing/…} fm0 f1 f3 f0 f1 : CPU internal fault => {resource/ processor/ computing/…} ETR – 2013 – Toulouse, France, 26-30/8/2013
Model transformation AADL metamodel AADL behavior annex (.ecore) metamodel (.ecore) AADL model (.xmi) Kermeta program Transformation Transformation Generation rules UPPAAL UPPAAL metamodel configuration UPPAAL model (.xmi) (.ecore) (.xml) ETR – 2013 – Toulouse, France, 26-30/8/2013
Model reduction – fault isolation FDIR F61 F41 f61 fm6 f62 F51 FDIR fm4 fm5 f41 f42 f43 f51 f52 f53 F01 F02 F03 F11 F12 F13 F21 F31 F32 fm0 fm1 fm3 fm2 f0 f1 f2 f3 Device 1 Device 2 Device 4 Device 5 ETR – 2013 – Toulouse, France, 26-30/8/2013
Model reduction – Step by step validation FDIR FDIR recovery f1 fm1 F1 f2 fm2 F2 {active} {Nominal} {idle} {active} {Nominal} {idle} T0 = 0 Find the earliest Find t suchthe earliest t1 such Itthat that is true at t f1 fm1 F1 f2 fm2 F2 T0 = t {failed} {failed} {failed} {active} {Nominal} {idle} {failed} {failed} {failed} {failed} {failed} {failed} Slowest recovery time(t2) < Fastest propagation time(t1) Find the latest t2 such that f1 fm1 FDIR FDIR {failed} {failed} {confirmed} {recovery} ETR – 2013 – Toulouse, France, 26-30/8/2013
To summarize… Systematic modelling method for dependability and FDIR Compositional (dependability pattern) Incremental (functional, dependability and FDIR layers) Extensible (enhancement of deduced propagation paths) Demonstrable (model simulation and model checking) Complex propagation, common mode faults, external events, … Method improvements Model reduction techniques, possibly resolution techniques Complete libraries (fault models, failure modes, propagation rules) Integration into company’s processes Articulation of FDIR, Dependability, Engineering processes Place of simulation, formal validation Tools, methods benchmarking, training ETR – 2013 – Toulouse, France, 26-30/8/2013
Outline Dependability in space Constraints, needs, solutions, achievements Dependability (FDIR) process Model Based Dependability Engineering, Assessment Why it may become so complicated? ETR – 2013 – Toulouse, France, 26-30/8/2013
Hybrid models Structure / Behaviour Behaviour: Discrete logic + continuous Decoupling possible but based on a priori hypotheses which must be validated, cannot be exhaustive, hardly systematic and anyway limited by the actual interactions Interest of coupling, integrating models Limitations of current tools and even theoretical framework to support comprehensive and accurate simulations… and even more proofs ETR – 2013 – Toulouse, France, 26-30/8/2013
Why we need at least time(s) Explicitly used by FDIR mechanisms (implicit coupling, enforcement of the desired organisation, sequencing, hierarchy) Sort of “pivot” notion between the discrete logics and the continuous physical phenomena Explicit incorporation of the temporal characteristics of failures Transient, intermittent… Possibly some other interesting though speculative ideas about time and failures ETR – 2013 – Toulouse, France, 26-30/8/2013
Time and failures Notion of resistance, during some time, to faults Explicit property in security Less usual though possibly interesting for accidental faults See also the built-in resistance to exceptional environmental conditions Notion of “trajectory of failures” “Mortal Byzantine”, cf. Josef Widder, Martin Biely, Günther Griddling, Bettina Weiss, TU Wien, DSN 2007 Notion of safety margin for dynamic systems Recent and on-going PhD studies (Amina Mekki-Mokhtar, Mathilde Machin, LAAS-CNRS, Toulouse, Supervised by D. Powell, J. Guiochet) ETR – 2013 – Toulouse, France, 26-30/8/2013
It is a long way to space Factory, Road… No source of failure should be overlooked ETR – 2013 – Toulouse, France, 26-30/8/2013
Space Systems Dependability Industrial Challenges Jean-Paul Blanquart ASTRIUM Satellites Jean-paul.blanquart@astrium.eads.net ETR - 2013 Toulouse, France, 26-30/8/2013
Vous pouvez aussi lire