Structural Map of the Atlantic Ocean Carte structurale de l'océan Atlantique
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
Explanatory Notes Notes explicatives Peter MILES & Philippe BOUYSSE Structural Map of the Atlantic Ocean Carte structurale de l'océan Atlantique 1:20 000 000 scale Échelle 1/20 000 000 (2012) COMMISSION DE LA CARTE GÉOLOGIQUE DU MONDE COMMISSION FOR THE GEOLOGICAL MAP OF THE WORLD
COMMISSION OF THE GEOLOGICAL MAP OF THE WORLD COMMISSION DE LA CARTE GÉOLOGIQUE DU MONDE STRUCTURAL MAP OF THE ATLANTIC OCEAN CARTE STRUCTURALE DE L’OCÉAN ATLANTIQUE (1st edition / 1e édition) Explanatory notes Notes explicatives By Peter Miles & Philippe Bouysse (CGMW) 2012
© CCGM/CGMW 2012 ISBN 978-2-917310-14-4 The reproduction of excerpts or the totality of this text is authorized provided the authors and the publisher are duly credited. Tout ou partie de ce texte peut être reproduit sous réserve d’en mentionner les auteurs et l’organisme responsable de la publication. CCGM-CGMW 77, rue claude-bernard 75005 Paris, France ccgm@club-internet.fr www.ccgm.org
SUMMARY / SOMMAIRE Abstract Résumé Foreword, 4 Avant propos, 12 Mapping an ocean, 5 Cartographier un océan, 13 Physiography, 5 Physiographie, 13 Structural Map, 5 Carte structurale, 13 Introduction, 5 Introduction, 13 Onshore areas, 5 Zones émergées, 13 Precambrian, 5 Précambrien, 14 Central Atlantic Magmatic Province (CAMP), 5 Province Magmatique de l’Atlantique Central (CAMP), 14 Early Cretaceous rifting, 6 Rifting tu Crétacé inférieur, 14 Parana-Etendeka Traps, 6 Trapps du Parana-Etendeka, 14 Cameroon Hot-Line, 6 Ligne chaude du Cameroun, 14 Paleogene volcanism, 6 Volcanisme Paléogène, 14 Neogene volcanism, 6 Volcanisme Néogène, 14 Hotspots, 6 Points-chauds, 15 «Alpine» orogens, 6 Orogènes «Alpins» , 15 Offshore areas, 6 Zones sous-marines, 15 Magnetic Anomalies and age of the oceanic crust, 6 Anomalies magnétiques et âge de la croûte océa- nique, 15 Structural features, 7 Éléments structuraux, 15 Anomalous submarine plateaus, 7 «Plateaux océaniques», reliefs sous-marins «anor- Subduction zones, 7 maux, 15 Deep-sea drill sites, 7 Zones de subduction, 15 Forages océaniques profonds, 16 Sediment thickness, 7 Épaisseur des sédiments, 16 Zone of oceanic crust deformation, 8 Zone de déformation de la croûte océanique, 16 Continental margins, 8 Marges continentales, 16 Transitional Crust, 9 Croûte transitionnelle, 17 The seafloor spreading ridges, 8 Rides d’expansion océanique, 17 Overview of the opening of the Atlantic Ocean and Grands traits de l’ouverture de l’océan Atlantique et adjacent oceanic basins, 8 des bassins océaniques adjacents, 17 Marginal Seas, 9 Mers marginales, 18 Seismicity, 9 Sismicité, 18 Geodynamic Sketch, 9 Esquisse géodynamique, 18 Documents contulted in preparation of the map, 19 Documents consultés pour la préparation de la carte, 19 Maps, 19 Cartes, 19 Data sets, 19 Données, 19 References (text and map), 19 Références (texte et carte), 19
THE STRUCTURAL MAP OF THE ATLANTIC OCEAN At the scale of 1:20 000 000 – First edition 2012 EXPLANATORY NOTES ABSTRACT This pamphlet accompanies the Structural Map of the Atlantic Ocean which synthesizes the interpretation of geological and geophysical data compiled from oceanographic cruises spanning several decades and their published results. The main structural map is presented in the framework of the continental structural features. The oceanic areas include the following parameters: • The age of the oceanic crust in Epochs. • Magnetic anomaly chron picks where they have been observed or interpreted. • Seafloor spreading axes, active and fossil. • Transform faults and fracture zones. • Anomalous relief and subduction zones. • Seaward dipping reflector (SDR) volcanic sequence. • Earthquake epicentres and source depths. • Hotspots. • Deep ocean drilling sites - DSDP( IPOD), ODP and IODP - where basaltic basement or transitional crust was reached. • Sediment thickness - contours over oceanic crust and thinned continental crustal areas. • Crustal deformation zones. Summary of continental geology related to the geodynamic evolution of the ocean. The map is accompanied here by a corresponding Geodynamic Sketch (inset in the map) and Physiographic Map (inset in these notes). These display the tectonic plates pattern and illustrate the morphology and their juxtaposition. This includes associated oceanic features included in the text. FOREWORD The Commission for the Geological Map of the World (CGMW/CCGM) is a scientific Non-Governmental Organization (NGO) recognised as Category A by UNESCO and affiliated to the International Union of Geological Sciences (IUGS). It was initiated in an early form in 1881 during the 2nd International Geological Congress (IGC) held in Bologna. During the 1980s the CGMW co-published with UNESCO the maps of the five oceans of the globe for the first time (including the ‘Antarctic Ocean’). These were part of the ‘Geological Atlas of the World’ and printed at a relatively small scale. Two decades later our knowledge of the deep seafloor of the world’s oceans has improved to such an extent that during the 1990s the Commission decided to initiate a new series of seafloor maps featuring whole oceans, whose first release in 2004 was the Structural Map of the Indian Ocean. This map of the Atlantic Ocean1, issued for the 34th IGC in Brisbane in 2012, is the third one of this series, being an extension of, and replacement for, the 2008 North Atlantic map. It overlaps the adjoining Indian Ocean map. Publication of the map received financial support from UNESCO, the Geological Survey of Norway (2008) and IFREMER. 1 Authors of the map: Peter Miles, Philippe Bouysse and Kaiser de Souza with the contributions of Brian Tucholke, Carmen Gaina, Laurent Gernigon, Dietmar Müller, Alexandra Robert and GEUS. 4
MAPPING AN OCEAN STRUCTURAL MAP From an Earth science perspective the compilation of a structural INTRODUCTION map of an ocean, as opposed to an atlas or onshore cartography, The Atlantic Ocean is the result of the break-up of the Pangea is not as straightforward an exercise as is at first apparent. The super-continent which began between what is now North reasons for this are: America and Africa (north-central Atlantic) in the Early – ● The map cannot be a truly geological. That is, the Middle Jurassic. This formed the Laurasian super-continent seabed geology and other formations cannot be of North America and Eurasia as it separated from Gondwana mapped as in land geology otherwise it would mainly which consisted of present day South America, Africa, Arabia, represent Plio-Quaternary sediments. India, Madagascar, Australia, and Antarctica. A second break- ● It is also not possible to construct a conventional up phase occurred when Gondwana divided into several tectonic map because the evolution of the oceanic continental blocks. As concerns the South Atlantic, this involved lithosphere is never greater than ~200 Ma in age. Africa rifting from Antarctica, then from South America rifting ● The map is also not simply an illustration of one from south to north. Eventually North America and Greenland geophysical parameter (seismicity, magnetic broke with Eurasia to open the NW Atlantic and Norwegian Sea. anomalies, spreading rate etc.) but a representation of The Atlantic and Indian Oceans continued to expand, closing all physical parameters, plus observed and interpreted the Tethys Ocean. Following this the African Plate changed lineations. direction from west to northwest towards Europe while South America began to move north. Interaction of these motions ● Unlike the majority of maps devoted to an oceanic with those of Cocos, Nazca, and Caribbean plates form the area, there is also a need to include some land structural complex transform, trench and subduction plate boundaries of geology that places island and surrounding continent the Caribbean Plate which abuts the North Atlantic Ocean. Here structures in context. This provides complimentary the boundary between the North and South American plates is information in understanding the evolution of an as yet poorly defined, and is distributed within a band facing the ocean basin, such as in the fit of adjacent Precambrian front of the Lesser Antilles arc. shields prior to rifting and separation of the continental fragments. ● The map must also compile and overlay different ONSHORE AREAS entities of information in such a way as not to impede On this map, the onshore is represented in a somewhat different an acceptable balance between clarity and detail. way if compared with previous CGMW seafloor maps. The For all these reasons we chose to title this kind of cartography a geology has been simplified and the stress was laid on pivotal “structural map”, a term not heavily constrained by semantics. factors involved in the genesis and evolution of the Atlantic Ocean, mainly relevant to large magmatic events (hotspots, As to the size of the printed map, publishing experience led large igneous provinces – LIP), but also connected to deep us to avoid large dimensions owing to printing constraints, intra-continental graben fracturation. Consequently, the Andean user convenience, display clarity and cost. The final scale is volcanic belt, the Karoo LIP sequence (at ca. 183 Ma) predating chosen as 1:20,000,000 at the Equator and corresponds to that the initial rifting of the South Atlantic, or the deep inland remote of the Indian Ocean structural map. The projection is Mercator Cenozoic volcanics, such as in Hoggar or Tibesti, are not shown. using the WGS-84 ellipsoid generally adopted by the offshore Thereafter, some comments are made on the differents items of sciences community such as the International Hydrographic the onshore section of the legend. Organization and the Intergovernmental Oceanographic Commission. Consequently the north and south boundaries of precambrian the map were limited to 72˚N and 72°S in order to avoid too The nearly 4 Ga lasting Archean and Proterozoic formations much distortion of the polar regions, while retaining significant were put together in a single Precambrian unit (extracted from detail in the northern Norwegian-Greenland Sea and Southern the 3rd edition of the Geological Map of the World, 2010) which Ocean / Weddell Sea. displays the subaerial extent of the old cratonic areas. However, To maintain legibility in the constraints of an A0 sheet the the Appalachian Mountains, the Iberian Peninsula and France, Map of the Atlantic Ocean comprises a main Structural map may locally include undifferentiated Neoproterozoic-Lower with an inset of the Geodynamic sketch, accompanied by these Paleozoic formations. A very minute outcrop of Mezoproterozoic “explanatory notes” where we include a physiographic map. is also located in the southern tip of West Falkland island. CENTRAL ATLANTIC MAGMATIC PROVINCE (CAMP) PHYSIOGRAPHY At the Triassic-Jurassic boundary (200 Ma ago), a dramatic It would have been difficult to include some additional entities event occurred, related to the break-up of the Pangaea and the of information onto a single structural map without loss of rifting and subsequent opening of the central part of the Atlantic, clarity. This applies particularly to the detail involved with and probably also to the second largest mass extinction of living physiography. However, geophysical data bases do now allow organisms. This event represents catastrophic outpourings of production of high resolution computer generated images of the huge volumes of tholeiitic basaltic lavas, preserved in eastern physiography of the Earth’s surface and seafloor using colour North America, northern South America, West Africa, and shaded relief. These displays are derived from elevation and southwestern Europe (cf. Hames et al., 2003). This magmatic bathymetric data sets and provide increased information and climax produced the largest known example of continental flood aesthetic value. For these reasons it was considered necessary to basalt, extending over 7 x 106 km², and maybe more if one takes defer to the physiographic sketch to the “explanatory booklet”, into account the coeval seaward dipping reflectors within the reduced to an A3 format. relevant present-day continental margins. The basaltic remnants 5
were identified as deeply eroded dykes, related sills, subaerial Bight FZ). Onshore, the volcanism stretches from a relatively lava flows and buried continental flood basalts, some of the small area of Baffin Island, to eastern Scotland and northern latter covering large areas such as within the Amazon graben or Ireland (e.g. the Giant’s Causeway), including Greenland traps in the region adjoining Morocco, Algeria and Mauritania. (both visible on the east and west coast) and the Faroes Islands. A simplified picture of these occurrences is given in the map, taken into account published papers (Chabou et al, 2007; Jourdan NEOGENE VOLCANISM et al., 2003; Jourdan et al., 2009; Knight et al., 2004; McHone, This specific item applies only to the intra-oceanic islands (from 2000; Ragland et al., 1984). These remnants stretch out from Jan Mayen to the north, to Bouvet to the south) and archipelagos the Amazonian and West African cratons to the south, as far as which, Iceland excepted, appear generally as minute dots owing Newfoundland and Brittany (Kerforne dyke) to the north, and to the scale of the map. This age corresponds only to the subaerial the green dashed line gives an approximate idea of the original exposures, regardless of that of their deeper substratum. The extent of this huge magmatic province. The small exposures ca. 100,000 km² wide Iceland is crossed through by the Atlantic of doleritic sills (“ophites”) of the Pyrenees are related to the Oceanic spreading system. The onshore pattern (cf. the CAMP event (Rossi et al., 2003) and are shown as dots on the Geologic Map of the Arctic, 2011) is more complex than that of map. the normal oceanic accretionary ridge outside the island. This peculiar feature results from the hotspot interacting with the EARLY CRETACEOUS RIFTING plate-tectonics spreading process. During Early Cretaceous, a phase of continental rifting The same mode of representation is used for the present-day connected to the rifting and subsequent oceanic spreading of sub-aerial part of the volcanic line produced by the subduction the South Atlantic, is marked by the structuration of a system of the Atlantic oceanic crust beneath the continental gap left of grabens (formerly coined as “aulacogens”, i.e. aborted pre- between North and South America for the Lesser Antilles, and oceanic rifting): the Benue graben system extending towards South America and Antarctica for the South Sandwich, both Central Africa and the conjugate Amazon graben. On the map, island arcs being similar in shape and size, but not in their they appear as the 3000 m isopach line (cf. Tectonic Map of geological evolution. Africa, 2010; Mapa Tectónico de América del Sur, 1978). HOTSPOTS PARANA-ETENDEKA TRAPS The different types of “hotspots were” plotted in the 3rd edition At the time of their formation, some 133 Ma ago (Hauterivian), of the Geological Map of the World (2010). For the present the quite extensive Parana traps of southern Brazil formed a Atlantic Map, only four typical oceanic and quite well defined single LIP with the Etendeka traps of Namibia, as a result of hotspots were selected in order of importance of today’s activity: the climaxic production of the then young Tristan da Cunha Iceland, Azores, Tristan da Cunha, Bouvet. All four, centred on hospot. Up to recently, the extension of the remnants of the an island or an archipelago, are located on or in the vicinity of Namibian traps was somewhat reduced (cf. Geological Map of the active spreading axis. Iceland is still very active. Tristan the World, 2010). But, it gained a very significant increase with da Cunha that played a pivotal role in the genesis of the South the discovery of coeval basalts subcroppings in eastern Angola Atlantic and the build-up of the hotspots trails of Walvis Ridge (cf. Sub-Kalahri Geological Map, 2001; D. Frizon de Lamotte and Rio Grande Rise, seems to be geologically speaking close and F. Guillocheau, pers. comm. 2011). to exhaustion. The Azores hotspot is quite active and is marked CAMEROON HOT-LINE by a significant thermal bulge over the spreading axis and at the crossroads of North America, Europe and Africa plates. Unlike “classical” hotspot tracks, the some 2000 km long alignment, spanning from the outskirts of Lake Chad to the tiny “ALPINE” OROGENS island of Pagaloo in the Gulf of Guinea straddles both continental The evolution of the Atlantic is coeval with the Alpine orogenic and oceanic lithospheres (Fitton, 1987). This “Cameroon Line” belts considered in their broad sense. It is the reason why their shows ages which are not distributed in accordance with a limits are shown with a specific symbol. In the frame of the regular space progression of the magmatism throughout time. map are concerned: the Antarctic Peninsula, Andes, Alps-Jura, The today active shield-volcano of Mount Cameroon is located Pyrenees, Betic and Maghrebides. in the middle of this line. This is the reason why this kind of feature is labelled “hot-line”. The age distribution of effusive volcanism and plutonic complexes ranges from present to 70 OFFSHORE AREAS Ma (Deruelle et al., 2007). These authors have postulated that MAGNETIC ANOMALIES AND AGE OF THE OCEANIC CRUST the volcanic occurrences are controlled by oblique shear zones prolonging present-day oceanic fracture zones. This Cenozoic When seafloor spreading mid-oceanic ridge (MOR) lavas cool alignment is more or less parallel to the predated Cretaceous they “fossilize” the vector and intensity (normal or reversed) Benue graben system. Along with the Cameroon Line sensu of the Earth’s magnetic field at that geological time to generate stricto some probably parental magmatism was plotted, such linear, and (mostly) identifiable magnetic anomalies. As the as the Quaternary scoria cones of Jos, in Central Nigeria. The lavas were accreted to the seafloor along spreading centres – Cameroon Hot-Line is shown with a specific colour. the principle element in the geological structure of an ocean – they can be dated by using a timescale of the geomagnetic reversal sequence. This has been derived from correlating deep PALEOGENE VOLCANISM sea drilling ages of oceanic basement, normally the immediate A wide area of tholeiitic volcanism characterises a “North overlying sedimernts, with the anomalies. Using the identification Atlantic Igneous Province”, related to the activity of the powerful of a number of characteristic magnetic anomalies it is possible Iceland hotspot during the Paleogene, coinciding with the to map the ocean floor age and measure the seafloor spreading opening of the northern part of the Atlantic Ocean (north of the processes. Crust of unknown age, or of current different age 6
interpretations, and crust of unknown type (oceanic/thinned partial melting of the overlying mantle material to provide the continental) is shown in dark grey to differentiate from known source of the magma that generates the island arc volcanoes. thinned continental crust (mid grey). The subduction zone, where the oceanic lithosphere plunges beneath the arc lithosphere, is shown with large solid red The chronostratigraphic ages (epochs, mainly using ICS triangles. In front of the Lesser Antilles a powerful terrigenous geological RGB colours) are used here and not the geomagnetic input coming from the south (Amazon and Orinoco rivers) has ages (or “chrons” corresponding to the geomagnetic reversal built a huge active sedimentary accretionary prism, reaching chronology) as often displayed in geophysical texts. This is a thickness of some 20km where Barbados Island is emerging to maintain consistency with geological events (e.g. the K/T (Casey Moore, 2000). It is decreasing towards the north and is boundary). These chronostratigraphic (geological) ages of disturbed by the subducting Tiburon and Barracuda ridges. This the oceanic crust have been obtained by interpolation between active sedimentary subduction front is marked by red line with digitized magnetic anomaly picks of fixed age (Müller et al., small solid triangles. 1997). It was also considered valuable to show the location of the principal magnetic anomaly picks used in this age Subduction vectors show the orientation and convergence rate. calculation plus other recent picks that detail seafloor spreading To the north of the Caribbean arc (from Cuba to Bonaire- better in some areas. In the legend a table provides the list of Curaçao-Aruba) the convergence translates into the Puerto Rico each standard anomaly (or chron, ‘C’) and its age, following the trench and onto a westerly (left-lateral) strike slip system of geomagnetic timescale of Cande & Kent (1995) from C1o (0.78 faulting. To the south the convergence is translated into (right- Ma) to C33o (79.08 Ma), and after Gradstein et al. (1994) for lateral) strike slip motion into the north of South America. C34 (83.0 Ma). These picks are shown as small circles colour The Scotia Arc has a shape and size quite similar to those of coded for each chron. As there is no single magnetic pick data the Lesser Antillas arc and translates into a left-lateral transform set for the whole of the map area the anomalies are shown, fault bounding the Falklands Plateau. It has no significant consistently, in three sections: sedimentary accretionary prism. 1. North of the Newfoundland-Azores-Gibraltar lineation after Gaina et al. (2002) plus Müller et al. (1997) anomalies 13y to DEEP-SEA DRILL SITES 34 y in the Newfoundland Basin and Iberian Abyssal Plain. The deep-sea drilling sites occupied by the international scientific Anomaly C20 is shown as C20o and C20y north and south consortia of DSDP (IPOD), ODP, IODP are shown as black of the match respectively. Also shown here are anomalies stars with their site identification number. Only those holes that M0 and M3 in the northern part after Tucholke et al. (2007), reached basaltic basement or marginal thinned continental crust Miles et al. (1996) and Russel and Whitmarsh (2003). are shown. These drill-holes are important because the basalt 2. Between the Newfoundland-Azores-Gibraltar lineation and sampled can be dated using radiometric techniques and sediment the Fifteen-Twenty FZ after Müller et al. (1997) and (1999). sampled immediately above the basement can be dated from their microfauna. In the latter case the age of the oceanic crust 3. South of the Fifteen-Twenty FZ after Müller et al. (1997). predates the sediment age. As referred to above, these samples permit control on the age of the oceanic crust and calibration of STRUCTURAL FEATURES the magnetic anomaly timescale reversal sequences. However, The following structural features have been mapped: axes of Sibuet et al. (2007) showed that the serpentinization process in oceanic accretion (mid-ocean ridges) with full present day some regions can also result in the formation of magnetic grains spreading rate scalers in cm y-1; extinct spreading axes in the which produce magnetic anomalies similar to those of typical Baffin Bay, Labrador Sea, Norwegian Sea, Bay of Biscay, Scotia oceanic crust. Sea and Southern Ocean. Principal selected transform faults, with their fracture zone extensions, are mapped from satellite SEDIMENT THICKNESS gravity and published texts. Extensions to, inferred and other Compilations of sediment thickness, principally from seismic FZs can be seen from magnetic anomaly pick sequences. reflection measurements, can be rare and often generalized. However the Atlantic Ocean has coverage from the NGDC ANOMALOUS SUBMARINE PLATEAUS world sediment thickness grid. This has been used to construct Bathymetric highs associated with anomalous volcanic 1km isopachs (lines of equal thickness) shown as dashed lines basement (seamounts, ‘aseismic’ ridges, oceanic plateaux, with an overprinted grey hue whose intensity increases between features of uncertain or disputed origin and selected significant 1 and 15km. The thickest sediments occur along the continental buried basement features) are shown in a pale yellow hue. margins and thick sediment fans extend seaward of the large Notable features include the J anomaly Ridge2 south of the river deltas and estuaries such as the St Laurence (Laurentian Grand Banks, the Greenland-Iceland, the Faeroes ridges, Azores Channel), Amazon cone and Congo Fan. triple junction, Walvis Ridge and Rio Grande Plateau. Barbados is the emergent part of a large sedimentary accretion SUBDUCTION ZONES over 15km thick associated with the convergence of the North American/South American plates, and Caribbean tectonic Two subduction zones exist in the Atlantic Ocean/Southern plate. Here sediment is being taken from the descending oceanic Ocean, facing the Lesser Antilles and the Sandwich island arcs. plate and piled up along the plate boundary to form complex The under-thrusting and relatively cold oceanic crust of the sedimentry structures, shear zones and methane hydrates. North and South American plate(s) is progressively heated as it is forced down into the plastic asthenopheric mantle beneath the ZONE OF OCEANIC CRUST DEFORMATION Caribbean and Scotia plates. It becomes dehydrated and triggers East of the Lesser Antilles Island Arc, and coincident with the 2 The J Anomaly Ridge lies beneath the J Magnetic Anomaly at the young end diffuse boundary between the North and South American Plates, (M-4 to M-0, Barremian) of the M series magnetic anomalies (cf. Tucholke is a region of deformation caused by adjacent compressional and and Ludwig, 1982). 7
tensional forces. The compressional stress of this sector has led THE SEAFLOOR SPREADING RIDGES to the formation of the Tiburon and Barracuda ridges. Another The Atlantic Ocean spreading centre – generically known region of deformation exists across the Azores – Gibraltar plate as the Mid-Atlantic Ridge (MAR) – is also known as the boundary between the Eurasian and African Plates. These areas Reykjanes Ridge between the Charlie-Gibbs FZ and Iceland, are shown overprinted with hatching. They are associated with the Kolbeinsey Ridge north of Iceland to the Jan Mayen FZ and diffuse seismicity. They also reflect the complex tectonics along the Mohns Ridge to the north. It forms the boundary between the south western Eurasian Plate margin. the North American and Eurasian/African Plates and that An additional zone of deformation is shown along the Rio between the South American and African Plates. In the South Grande Plateau, a hot-spot trail, and may not represent the same Atlantic the MAR bifurcates at the Bouvet Triple Junction into structure as seen in true oceanic crust. the Southwest Indian and America-Antarctica ridges to bound the Antarctic Plate. These plate boundaries ware created from CONTINENTAL MARGINS evolving phases of spreading during the Mesozoic and Cenozoic The delineations used in this map between continental shelf, Eras, at different times and at different rates. This can be seen slope and oceanic crust should not be confused with the on the map by the width of the coloured strips located on either legal term ‘extended continental shelf’ used in the United side of the ridge; these bands represent the area of oceanic Nations Convention on the Law of the Sea (UNCLOS). The floor generated by the ridge during the time of a geological latter is a political boundary constructed by the application of stratigraphic Series or time Epoch (i.e. Late Cretaceous) since parameters laid down by the UNCLOS Article 76 which applies early in the Jurassic Period. The thin black arrows that overprint morphological and geological factors in specific contexts not the ridge axes give the (combined) spreading rate scaler. used here. The continental margin represents that part of the continent OVERVIEW OF THE OPENING OF THE ATLANTIC situated at depth beneath sea level. It extends from the outer OCEAN AND ADJACENT OCEAN BASINS continental shelf – more or less arbitrarily bounded by the 200m The breakup of Pangea initiated the formation of the Atlantic isobath – to a continental slope and rise that meets oceanic crust Ocean with rifting during Early to Middle Jurassic time that at an average water depth of about 3000m. In this map the slope separated Gondwana (South America, Africa and other southern is not always shown to include its full morphology sensu stricto, continental masses) from Laurasia (North America and Eurasia). but as a representation of its location bounding the shelf edge Spreading was well established by CM21 time when incipient and deep water or outer banks. Sediment fans and extended seafloor spreading began in the Caribbean to separate South and continental rises are not included as slope where they would Central America. obscure sediment thickness contours. The continent-ocean Prior to this, east-west orientated Early Jurassic rifting between boundary may also lie beneath the lower slope and extended Africa and Antarctica began at around 190 Ma. This initiated the continental rises. Karoo volcanics and extended along the east African margin into The shelf (
After rifting, Africa continued to separate from South America As explained, these earthquakes are not distributed randomly, in the south and at CM11 time (~132 Ma, Early Cretaceous), rather they define accurately the plate boundaries and faults. Iberia, already fully disconnected from Africa, moved apart At the MAR seismicity is generated by tensional stress exerted from the Eurasian Plate when opening the Bay of Biscay. by the injection of magma at the axis of the ridge (oceanic Rifting then began between North America and Eurasia accretion). At transform faults the shear stress is caused from (Gibraltar – Rockall) and seafloor spreading may have started opposite movements along the fault between the offset ridge in the Tagus Abyssal Plain by CM3 time (~124 Ma, mid- axes either side of the fault. Both these causes of earthquakes Early Cretaceous), possibly the earliest identifiable anomaly are generally shallow and of low magnitude. in that region. After this, mantle exhumation developed in the There is a concentration of earthquakes along the Lesser Newfoundland basin and Iberia margin, the J anomaly Ridge Antilles Island Arc. This is the only active subduction zone in and Madeira-Torre Rise formed and normal seafloor spreading the North Atlantic Ocean and forms the boundary between the resumed and migrated north to establish seafloor spreading by oceanic crust of both American Plates which is being under- C34 (84 Ma, Late Cretaceous) and later into the Labrador Sea. thrust beneath the Caribbean Plate. Friction occurring at the The Labrador Sea opened by C30 at the latest, although a C32 sloping interface between the two plates produces the stresses pick (~72 Ma, latest Cretaceous) is plotted from the data set that generate seismicity during their release, and features what in crust of unknown age. Spreading then extended to the west is known as a “Wadati-Benioff zone” which in this region of Rockall by C24 time (~52 Ma, early Eocene) to separate generates the whole range of earthquake magnitudes and focal Greenland and Eurasia and then ceased first in the Baffin Bay and depths. then in the Labrador Sea between C20 and C13 time respectively The same process occurs for the seismicity of the South Sandwich (45 - 33 Ma, mid-Eocene to basal Oligocene) leaving strike slip island arc where the oceanic crust of the South American plate motion in the Davis Strait. The new spreading centre between dips beneath the crust of South Sandwich microplate. Greenland and Eurasia (Rockall), formed first along the proto Other earthquakes are seen to be associated with the east Reykjanes and Mohns Ridges, and then by C13 time along a and west areas of crustal deformation – both associated with now fossil Aegir Ridge. The latter was abandoned by C7 time plate boundary adjustments. Also the Azores triple junction (~26 Ma, late Oligocene) when the Jan Mayen continental block bathymetric high volcanic centre, associated with the MAR, separated from Greenland and spreading jumped to Iceland. shows some off axis activity. During this time Iberia moved north to partially close the Bay of Biscay and began to move with Eurasia. GEODYNAMIC SKETCH The MAR is offset by fracture zones of various scales. These express the response to tectonic plates’ motions on a curved The Geodynamic sketch gives an overview of the configuration Earth. They also play an important role in the circulation of of the plate boundaries from the Norwegian – Greenland Sea to deep-sea currents in that they form breaches in submarine ridges the Southern Ocean at the present time. Ten lithospheric plates that normally would impede the circulation of bottom waters appear in the map: essential to maintain the climatically important, nutrient rich − The large North American, South American, Antarctic, ocean circulation pathways. African and Eurasian plates; − The mid-sized Caribbean, Cocos, Nazca (the latter two only MARGINAL SEAS very partially), and Scotia plates; Three marginal seas have connections with the Atlantic Ocean. − The South Sandwich and South Shetland micro-plates. Within the frame of the map, two appear partially (Mediterranean The main bathymetric features, including principal fracture and Caribbean seas) and one fully (Scotia Sea). The first two zones, are included with their toponomy. It also identifies the experienced a very complex history if compared to the more major oceanic plateaux and significant seamount chains. The recent Scotia Sea, and their structural map is either published regions associated with each tectonic plate are colour coded in June 2012 (Mediterranean) or in progress (Caribbean). This and differentiate, in a generalized way, between oceanic and is the reason why their structural pattern is here oversimplified. continental regimes. Isolated micro-continents (e.g. the Jan The basement of the Caribbean Sea is mainly formed of a Mayen micro-continent in the uppermost part of the map), complex oceanic crust and was shown by a grey stipple on a outer banks and thinned continental crust are shown in their white background. continental context. SEISMICITY Seismicity is an important parameter in the study of current regional geodynamics. It underlines the limits of the lithospheric plates (spreading axes, transform faults and subduction P.R. Miles & Ph. Bouysse, CCGM, Paris zones) and active intra-plate rifting. Earthquake epicentres are symbolized with open diamonds and are shown for both June 2012 on and off-shore occurrences. The time interval used for the occurrences is from 1973 to 2006 in order to both represent activity and maintain clarity. Also to this end only 4 categories of earthquake magnitude have been selected for display, the symbol size increasing for magnitude ranges 5.0-5.9; 6.0-6.9; Acknowledgements: 7.0-7.9; 8.0 and greater. The 4 categories of focal depths are shown as colour coding of the diamonds for depths 0-35 km; G.M. Elliott, Imperial College, London. 36-70 km; 71-300 km and 301-700 km. J-C. Sibuet, Ifremer, Brest. 9
PHYSIOGRAPHIC MAP O CARTE PHYSIOGRAPHIQUE Compiled by Alexandra Rob Me Data: GEBCO 2008 - 30 arc second grad. World Mercator datum: WGS84 -8648 -7500 -5000 -2500
OF THE ATLANTIC OCEAN E DE L’OCÉAN ATLANTIQUE / Compilée par bert (ENS, Paris) eters Isobaths: every 1000 m 0 2500 5000 6813 Isobathes : tous les 1000 m
CARTE STRUCTURALE DE L’ATLANTIQUE A l’échelle de 1/20 000 000 1e édition - 2012 NOTES EXPLICATIVES RESUMÉ Ce fascicule accompagne la Carte Structurale de l’Océan Atlantique qui synthétise les inter- prétations géologiques et les données géophysiques, couvrant plusieurs décennies, compilées à partir des campagnes en mer et des publications qui en ont résulté. La carte principale, structurale, représente l’océan et les continents qui l’encadrent avec leurs traits structuraux simplifiés. Dans le domaine océanique sont représentés les éléments suivants: • Âge de la croûte océanique, par époques. • Positions des anomalies magnétiques standard (ou «chrone»), là où elles ont été mesurées ou interprétées. • Axes d’expansion océanique, actifs et fossiles. • Failles transformantes et zones de fracture. • Reliefs sous-marins «anormaux» et zones de subduction. • Séquences des réflecteurs océaniques pentés vers l’océan (SDRs). • Épicentre des séismes et profondeurs des foyers. • Points-chauds. • Sites de forages océaniques profonds (DSDP, IPOD, ODP, IODP) où le substratum ou la croûte transitionnelle ont été atteints. • Épaisseur des sédiments, les isopaques étant dessinées sur la croûte océanique ou sur les secteurs de croûte continentale amincie. • Zones de déformation crustale océanique Représentation des éléments de géologie continentale liés à l’ouverture de l’océan Atlantique. La carte structurale est accompagnée d’une Esquisse géodynamique (en encart dans la carte) et d’une Carte physiographique (insérée au centre de ces notes). Ces deux documents annexes montrent la disposition des plaques lithosphériques qui couvrent ou enserrent le domaine atlan- tique, la morphologie de l’ensemble, ainsi que la toponymie d’un certain nombre de structures sous-marines évoquées dans le texte. AVANT PROPOS La Commission de la Carte Géologique du Monde (CCGM/CGMW) est une organisation non-gouvernementale (ONG) scientifique de catégorie A pour l’UNESCO et affiliée à l’Union Internationale des Sciences Géologiques (IUGS). Elle a vu le jour, sous une forme embryonnaire, en 1881 lors du 2e Congrès Géologique International (CGI) de Bologne. Dans les années 1980, la CCGM a co-publié avec l’UNESCO, et pour la première fois, les cartes à petite échelle des cinq océans de la planète (comprenant l’océan «Antarctique») incluses dans l’Atlas Géologique du Monde. Deux décennies plus tard, notre connaissance de la nature du fonds des océans avait tant progressé que la Commission a décidé de mettre en chantier un nouveau type de programme de cartographie des fonds marins, à l’échelle d’un océan ou d’une mer marginale, dont la première sortie est la Carte Structurale de l’Océan Indien (2004). La présente carte couvrant la totalité de l’océan Atlantique1, publiée pour le 34e CGI de Brisbane (2012), est la troisième de cette série et constitue l’extension de la Carte Structurale de l’Atlantique Nord (2008), qu’elle remplace. Elle recouvre la partie SW de l’océan Indien. La carte a bénéficié pour sa réalisation d’un soutien financier de l’UNECO, du Service Géologique du Norvège (2008) et de l’IFREMER. 1 Auteurs de la carte : Peter Miles, Philippe Bouysse et Kaiser de Souza avec les contributions de Brian Tucholke, Carmen Gaina, Laurent Gernigon, Dietmar Müller, Alexandra Robert et le GEUS. 12
CARTOGRAPHIER UN OCÉAN PHYSIOGRAPHIE Réaliser la carte d’un océan en essayant de synthétiser de la Comme on vient de le dire, il aurait été très difficile d’ajouter manière la plus appropriée ses caractéristiques principales dans sur la carte principale quelque information complémentaire que le domaine des sciences de la Terre, n’est pas un exercice aussi ce soit, sans en affecter sa perception visuelle. Cela s’applique facile qu’on pourrait le penser. En voici les raisons: tout particulièrement au volet physiographique. Les bases de données géophysiques permettent maintenant de produire des • La carte ne peut pas être une carte géologique, au images numérisées à haute résolution de la physiographie de sens strict du terme, c.-à.-d. représentant la nature des toute la surface terrestre, émergée et immergée, en utilisant une formations affleurantes (ou sub-affleurantes) comme représentation du relief combinant couleur et ombrage. Ces c’est le cas pour les cartes géologiques régulières procédés de représentation sont dérivés d’ensembles de données levées à terre. Sinon, la plus grande partie des surfaces altimétriques et bathymétriques et fournissent des images de sous-marines serait représentée par des sédiments plio- plus en plus précises et d’une grande qualité esthétique. Pour quaternaires. toutes ces raisons, il a été jugé nécessaire de reporter l’esquisse • La carte ne peut pas correspondre, non plus, à une physiographique dans les présentes “Notes explicatives”, mais carte tectonique en raison de l’évolution spécifique de réduite au format A3. la lithosphère océanique dont l’age ne dépasse jamais les quelque 200 Ma.2 CARTE STRUCTURALE • La carte n’est pas la simple cartographie d’un paramètre géophysique (carte de la sismicité, des différentes INTRODUCTION anomalies gravimétriques, du flux de chaleur,…). L’océan Atlantique résulte de l’éclatement du super-continent • La carte devrait inclure des éléments de la géologie Pangée, qui commença à se produire quand ce qui est maintenant des terres émergées (continents environnants et l’Amérique du Nord se sépara de l’Afrique pour former au îles disséminées au sein de l’océan), alors que ce Jurassique moyen et supérieur, l’Atlantique nord-central, n’est pas le cas, jusqu’à présent, pour la plupart extension occidentale de l’océan Téthysien d’orientation sub- des cartes consacrées aux océans. En effet, de latitudinale. S’individualisent ainsi les super-continents Laurasia telles informations sont susceptibles d’apporter un (Amérique du Nord et Eurasie) et Gondwana (Amérique du Sud, éclairage complémentaire à la compréhension de Afrique, Arabie, Inde, Madagascar, Australie, et Antarctique). l’évolution du bassin océanique, comme par exemple Une deuxième phase de rupture a lieu lorsque le Gondwana la correspondance des boucliers précambriens de part se divise lui-même en plusieurs blocs continentaux. En ce qui et d’autre du bassin océanique, ou la relation d’une concerne l’Atlantique Sud, il s’agit d’abord du rifting entre subduction avec l’arc volcanique correspondant. l’Afrique et l’Antarctique, puis de l’Amérique du Sud se séparant, • Enfin, la carte ne peut pas être le simple empilement progressivement, de l’Afrique, du sud vers le nord. Enfin, des donnés géologiques et géophysiques qui décrivent l’Amérique du Nord et le Groenland se détachent de l’Eurasie cet océan. Une sélection raisonnée de ces dernières est pour ouvrir le NW de l’Atlantique et la mer de Norvège. Ainsi, indispensable pour éviter qu’une telle accumulation ne les océans Atlantique et Indien continuent leur expansion, en compromette un équilibre acceptable entre lisibilité et stoppant l’extension téthysienne, et l’Atlantique va désormais niveau d’information. croître suivant un axe subméridien. Ensuite, le mouvement de Pour toutes ces raisons, nous avons choisi de dénommer ce type la plaque Afrique passe d’une direction W à une direction NW, de concept cartographique, “Carte Structurale», un terme qui vers l’Europe, tandis que l’Amérique du Sud commence à se n’est pas trop connoté sémantiquement. déplacer vers le N. L’interaction de ces mouvements avec ceux des plaques Cocos, Nazca, et Caraïbe génère un ensemble de En ce qui concerne la taille de la carte imprimée, l’expérience frontière complexe pour la plaque Caraïbe qui affronte la croûte nous a conduits a adopter un format raisonnable, car de trop océanique de l’Atlantique Central. À cet endroit, la frontière grandes dimensions occasionnent de nombreux inconvénients: entre les plaques Amérique du Nord et Amérique du Sud est mal limitation due à la taille des presses, problèmes de manutention définie et est distribuée le long d’une bande qui fait face à la et d’espace pour le stockage et l’affichage mural, nécessité de convexité de l’arc insulaire des Petites Antilles. proposer un prix de vente attractif. C’est pourquoi l’échelle finale d’impression est le 1/20 000 000 (à l’équateur), et correspond à ZONES ÉMERGÉES celle de la Carte Structurale de l’Océan Indien. La projection Sur cette carte, les zones émergées ont été représentées de Mercator utilise l’ellipsoïde WGS-84 généralement adopté d’une manière un peu différente de celle qui avait été retenue par la commodité des sciences océanographiques, comme précédemment pour les cartes CCGM des océans. La géologie l’Organisation Hydrogéographique Internationale et la a été simplifiée et l’accent a été mis sur les facteurs de premier Commission Océanographique Intergouvernementale. En ordre qui ont été impliqués dans la genèse et l’évolution de conséquence, les limites nord et sud de la carte ont été fixées à l’océan de l’océan Atlantique, ressortissant principalement à 72°N et 72° S afin d’éviter une trop grande distorsion des régions une activité magmatique importante (points-chauds, grandes polaires, tout en préservant des détails intéressants en mer de provinces magma- tiques ou LIP en anglais), mais aussi à une Norvège-Groenland et dans l’océan Austral/mer de Weddell. fracturation intra-continentale profonde (grabens). C’est la Afin de maintenir la lisibilité de la carte, dans le cadre d’une raison pour laquelle la longue chaîne volcanique des Andes, la impression en format A0, la Carte Structurale de l’Océan séquence LIP du Karoo (vers 183 Ma) antérieure au rifting de Atlantique comprend une carte structurale principale, l’Atlantique Sud, ou les secteurs volcaniques isolés, à l’intérieur accompagné d’une Esquisse Géodynamique en encart. A des continents, comme le Hoggar ou le Tibesti, n’ont pas été l’intérieur de ces Notes explicatives, on trouvera une Carte représentés. Ci-après, on trouvera quelques commentaires Physiographique. sur les différents éléments de la légende consacrée aux zones 2 Ma = million d’années émergées. 13
précambrien l’importance des restes de trapps en Namibie étaient limités à une L’Archéen et le Protérozoïque qui constituent quelque 4 Ga de zone côtière (cf. La Carte Géologique du Monde, 2010). Mais la l’histoire de la Terre ont été regroupés dans l’unité Précambrien découverte, par forage, de basaltes contemporains enfouis dans (contours tiré de la 3e édition de la Carte Géologique du Monde, l’Angola oriental permet d’étendre significativement vers l’est, 2010) qui montre l’extension des affleurements des vieilles la superficie initiale de ces trapps (cf. Sub-Kalahari Geological zones cratoniques. Cependant, certains secteurs des Appalaches, Map, 2001; D. Frizon de Lamotte et F. Guillocheau, pers. comm. de la péninsule Ibérique et de France, peuvent localement inclure 2011). des formations du Néoprotérozoïque-Paléozoïque inférieur LIGNE CHAUDE DU CAMEROUN indifférencié. Un petit affleurement de Mesoprotérozoïque a été reporté sur l’extrémité sud de l’île Ouest-Falkland. Cette ligne volcanique qui s’étend des approches méridionales du lac Tchad jusqu’à la petite île de Pagalu (ex-Annobon) PROVINCE MAGMATIQUE DE L’ATLANTIQUE CENTRAL dans le golfe de Guinée, affecte une lithosphère continentale (CAMP) puis océanique, ce qui est inhabituel. De plus, cette “ligne du À la limite Trias-Jurassique (il y a 200 Ma) se produit un Camerounˮ montre que les âges des édifices éruptifs ne sont pas événement majeur lié au rifting de la Pangée conduisant à en accord avec une migration régulière au cours du temps. Le l’ouverture de la partie centrale de l’Atlantique et probablement volcan actif du Mont Cameroun se trouve au milieu de cette à la deuxième plus grande extinction en masse d’organismes ligne. C’est pourquoi ce genre de linéament volcanique, qui ne vivants. Il s’ensuit un épanchement catastrophique d’énormes correspond donc pas à l’image classique d’une trace de point- volumes de laves basaltiques dans l’est de l’Amérique du chaud, a été dénommé “ligne-chaudeˮ. La distribution des âges Nord, le nord de l’Amérique du Sud, l’Afrique Occidentale, et du volcanisme effusif et des complexes plutoniques associés, du sud-ouest de l’Europe et dénommé “Province Magmatique s’étend de 70 Ma à l’Actuel (Deruelle et al., 2007). Ces auteurs de l’Atlantique Centralˮ (cf. Hames et al, 2003). La crise ont postulé que les manifestations de ce magmatisme sont magmatique aurait produit, d’après les reconstitutions, la plus contrôlées par des décrochements continentaux, obliques par grande surface de trapps (ou “basaltes de plateauxˮ issus de rapport à cette ligne, situés dans le prolongement des zones laves très fluides) connue à ce jour, avec quelque 7 x 106 km² de fracture actuelles du domaine océanique. Cet alignement de superficie, et peut-être même plus si l’on prend en compte cénozoïque est plus ou moins parallèle au système, antérieur, des couches particulières, de même âge, repérées dans le bâti des grabens de la Benoué. En même temps que la ligne du des marges continentales bordières. Aujourd’hui, il n’en reste Cameroun sensu stricto, identifiable par une couleur rouge vif, que des témoins représentés par des dykes profondément érodés on a reporté un magmatisme probablement parent, comme des et des sills associés, des affleurements de laves relativement cônes de scories quaternaires de la région de Jos, dans le Nigeria réduits, et des occurrences enfouies pouvant couvrir des surfaces central. relativement grandes, comme dans le graben de l’Amazone ou VOLCANISME PALÉOGÈNE dans la région à cheval sur le Maroc, l’Algérie et la Mauritanie. Un large secteur de volcanisme tholeiitique caractérise une Une image simplifiée de ces indices éparpillés est donné dans “Province Magmatique Nord-Atlantiqueˮ, lié à l’activité du la carte, à partir de publications (Chabou et al, 2007; Jourdan puissant point-chaud de l’Islande au cours du Paléogène, et et al, 2003; Jourdan et al, 2009; Knight et al., 2004; McHone, qui coïncide avec l’ouverture de la partie nord de l’océan 2000; Ragland et al., 1984). Ces témoins s’étendent depuis l’Atlantique (au nord de la ZF de Bight). A terre, le volcanisme les cratons d’Amazonie et d’Afrique occidentale dans le Sud, s’étend depuis une zone relativement restreinte de l’île de Baffin jusqu’à Terre-Neuve et la Bretagne (dyke Kerforne), dans le jusqu’à l’Écosse occidentale (p. ex. la Chaussée des Géants en nord. La ligne en tiretés vert donne une idée approximative de Irlande), et comprenant les trapps du Groenland visibles à la fois l’extension originelle de cette énorme province magmatique. sur les côtes est et ouest du Groenland et les îles Féroé. De petits affleurements de sills doléritiques (“ophitesˮ) dans les Pyrénées sont issus de l’événement CAMP (Rossi et al., 2003) VOLCANISME NÉOGÈNE et sont figurés par des points. Cette unité cartographique s’applique uniquement aux îles RIFTING DU CRÉTACÉ INFÉRIEUR et archipels intra-océaniques (de Jan Mayen au nord jusqu’à Bouvet au sud) qui, à l’exception de l’Islande, n’apparaissent Au cours du Crétacé inférieur, une phase de rifting continental sur la carte que comme des petits points. Cet âge néogène ne est connectée au rifting principal qui a conduit à l’expansion correspond qu’aux formations de surface, quel que soit l’âge de océanique de l’Atlantique Sud. Elle est marqué par une leur substratum. L’Islande, d’une superficie de quelque 100 000 structuration en grabens (naguère appelés “aulacogènesˮ, km² est traversée par le système d’expansion océanique de désignant un rifting pré-océanique avorté) : il s’agit du système l’Atlantique. Ce dispositif, à terre, est plus complexe (cf. la Carte de grabens de la Bénoué qui s’étend vers l’Afrique Centrale, Géologique de l’Arctique, 2011) que celui qui caractérise, en et du grand graben conjugué de l’Amazone. Ces derniers sont mer, une ride d’accrétion océanique. Cette particularité résulte représentés sur la carte par la ligne isopaque des 3000 m de de l’interaction d’un point-chaud très actif avec le mécanisme remplissage sédimentaire (cf. la Carte Tectonique de l’Afrique, d’expansion généré par la seule tectonique des plaques. 2010; la Carte Tectonique de l’Amérique du Sud, 1978). Ce même mode de représentation est appliqué à la partie émergée TRAPPS DU PARANA-ETENDEKA de la ligne volcanique actuelle produite par la subduction de la Au moment de leur formation, il y a environ 133 Ma croûte océanique atlantique dans les hiatus ménagés entre les (Hauterivien), les vastes trapps du Parana (Brésil méridional) masses continentales d’Amérique du Nord et du Sud, pour les ne formaient qu’une seule et même unité “LIPˮ avec ceux que Petites Antilles, et d’Amérique du Sud et d’Antarctique, pour les l’on retrouve aujourd’hui en Namibie dans la région d’Etendeka, Sandwich du Sud; ces deux arcs insulaires étant assez similaires conséquemment à la phase d’activité paroxysmale (stade pour la forme et la taille, mais dissemblables en ce qui concerne panache) du point-chaud de Tristan da Cunha. Jusqu’à il y a peu, leur évolution géologique. 14
Vous pouvez aussi lire