Sécurité des données Enjeux liés à l'internet des objets et à l'intelligence artificielle
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
Thierry Matusiak Architecte Division Sécurité IBM Membre actif du CLUSIF thierry_matusiak@fr.ibm.com LinkedIn : https://fr.linkedin.com/in/thierrymatusiak Sécurité des données Enjeux liés à l'internet des objets et à l'intelligence artificielle
Club de la sécurité de l’information français Présentation du CLUSIF ➢ Association de professionnels de la sécurité de l’information Lieu d’échange pour ses 700 membres, permettant de mettre en commun expertises et réflexions au service d’une SSI efficace ➢ Les activités de l’association • des groupes et Espaces de Travail • des publications • des conférences thématiques • des ateliers fournisseurs sur le grill • un exercice de Cyber-Crise (ECRANS) Pour plus d’information : clusif@clusif.fr
Club de la sécurité de l’information français A propos des GTs ➢ GT GDPR ➢ GT IoT ➢ GT Sécurité des systèmes industriels ➢ Pas de GT "sécurité de l'IA" ➢ Sujet d'innovation ➢ Lancement de "l'invité du CLUSIF" pour aborder ces sujets prospectifs ➢ Pas de GT "sécurité des données" ➢ Probablement parce que le sujet est très (trop) vaste ➢ Mais c'est un sujet récurrent, par exemple sur l'anonymisation des données
Club de la sécurité de l’information français Zoom sur le GT GDPR ➢ "RSSI & DPO" ➢ Des profils très différents : juristes, CIL, RSSI, fournisseurs de solutions ➢ Infographie publiée début 2018 (Fr : 50000+ vues, En : 7000+ vues) ➢ Augmentation des fuites de données communiquées ➢ Probablement parce que ca devient une obligation légale ➢ Risque de banalisation. Qui a entendu parler de la fuite Adidas par exemple ? ➢ Les amendes de la CNIL restent modérées ➢ Priorités de la CNIL ➢ La première règle est que vous devriez être conformes avec les règles de 1978 ➢ 3 secteurs sont dans le viseur en 2018: logement, emploi et stationnement
Club de la sécurité de l’information français Groupe de travail IoT • Le premier problème est de définir de quoi on parle • IoT grand public • IIoT / SCADA (qui a son propre GT) • L'IoT introduit des nouvelles classes de risques • Vies humaines mises en danger • Risque systémique • Toutes les entreprises sont clientes, au moins à travers : • La gestion de leurs bâtiments • Le shadowIoT importé par leurs employés • Données IoT • Big Data • Enjeux de privacy forts car ce sont souvent des données personnelles ou sensibles • Besoin de réglementation pour réguler le secteur - sujet d'actualité
Club de la sécurité de l’information français Cas concrets Exposition de données : Strava / Polar https://www.theguardian.com/world/2018/jan/28/fitness-tracking-app-gives-away-location-of-secret-us-army-bases https://www.bellingcat.com/resources/articles/2018/07/08/strava-polar-revealing-homes-soldiers-spies/ Détournement et surveillance : Enceintes connectées https://www.theguardian.com/technology/2018/feb/14/amazon-alexa-ad-avoids-ban-after-viewer-complaint-ordered-cat-food Mauvaise sécurité générale : Jouets https://www.cnil.fr/fr/jouets-connectes-mise-en-demeure-publique-pour-atteinte-grave-la-vie-privee-en-raison-dun-defaut-de Sécurité des données >> sécurité de l'objet (exemple : vol de voiture) https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob/
Club de la sécurité de l’information français Quelques constats et recommandations 1. Les objets vont probablement fonctionner dans un environnement hostile 2. Leur niveau de sécurité diminue avec le temps 3. Un secret initial ou partagé entre objets n'est pas un vrai secret 4. Si la configuration initiale est faible, elle le restera 5. Le risque de fuite grossit avec le volume des données qui s'accumulent https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=SEF03018USEN
IoT + Cognitive = Actionable AI
AI security extends the perimeter – where no one has gone before https://www.businessinsider.de/cambridge-analytica-could-rebrand-emerdata-2018-5?r=US&IR=T / • Political Security ̶ Mass surveillance ̶ Data & people manipulation https://www.theatlantic.com/technology/archive/2014/07/makeup/374929 • Physical Security https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob/ ̶ SCADA systems get exposed to the Internet ̶ IoT & AI bring threats into the real world (e.g. connected vehicles) • Digital Security remains crucial https://www.theguardian.com/technology/2018/may/29/tesla-crash-autopilot-california-police-car
AI Digital Security – 2018 Landscape • AI security includes the same "usual suspects" ̶ Identity & Access Management ̶ Network ̶ Application ̶ Data ̶ Infrastructure & Cloud • But AI also introduces new risks ̶ It can be misused ̶ It can be abused ̶ AI may also be difficult to audit
AI & Security : The Good, the Bad and the Ugly • The Good : AI improves security • The Bad : AI becomes a weapon for attackers • The Ugly : AI applications can be attacked
Using Artificial Intelligence to address growing security needs Data Analytics Trusted Advisors & Response Intelligence Consolidation • Approach: Model behaviors and • Approach: Assist admins & • Approach: Curation of identify emerging and past users intelligence and contextual threats and risks reasoning • Applications: Cognitive SOC • Applications: Network, user, analyst, orchestration, • Applications: Structured and endpoint, app and data, cloud automation and digital guardian unstructured (NLP) data sources
Data analytics What to predict… Inputs Output Security logs and events Insider Threats Peer grouping, time-series, anomaly Risk score of users Malicious Traffic Network data Risk score of flows Botnet Domains DNS data, registrar info Domain risk score and reputation New vulnerability rules Vulnerable Code Benchmark set of applications Reduced false positives Sql queries, errors, file access activity Database Attacks Anomalies & clusters Abnormal activity, risk scores IAM data, logs and UBA alerts Risky User Access Outlier detection with peer group Risk score of users, apps Behavioral Biometrics Fraudulent Users Keystrokes, app, mouse usage Risk score of users Phishing Websites URLs and website content Risk score of suspected sites Malware infection Endpoint activity Alerts
Trusted advisors "Pull" Assistants help you to answer a question "Push" Assistants provide relevant information / alert to the user What to do… Inputs Output Automatic offense investigations Events Root cause analysis, augmented context Voice, unstructured content, threat Contextual security information, spoken Virtual cybersecurity analyst content content Administrator advisor Unstructured content, threat alerts, etc. Personalized recommendations User commands, calendar and email Coordinates calendar and email activities; User self-service assistant contents, support knowledge base provides real-time end-user support Crisis management In the future, AI will also learn how to proactively adapt
Intelligence consolidation A SIEM ingests and analyzes structured data Artificial Intelligence adds a major dimension : unstructured data Watson for Cyber Security has ingested over 2 billion documents in the corpus and is adding thousands more every day. It’s reduced the time to analyze an incident from hours to minutes, greatly accelerating mitigation and reducing the impact to the organization. What to do… Inputs Output Security intelligence consolidation Unstructured content, web content Cybersecurity contextual knowledge base Data Lake Custom Implementation Unstructured + structured data Neutral / agnostic knowledge base
AI & Security : The Good, the Bad and the Ugly • The Good : AI improves security • The Bad : AI becomes a weapon for attackers • The Ugly : AI applications can be attacked
AI For Bad Guys ? • Should we be scared by AI in the hands of cybercriminals ? • Mass Surveillance & Mass Influence http://deepangel.media.mit.edu/ https://www.blackhat.com/docs/us-16/materials/us-16-Seymour-Tully-Weaponizing- Data-Science-For-Social-Engineering-Automated-E2E-Spear-Phishing-On-Twitter.pdf • Attacks automation • Massive change of scale TRUE FALSE • New types of attack • Generated text, sound, images & videos … even though AI can be used to identify forged videos… http://fortune.com/2018/02/21/artificial-intelligence-oxford-cambridge-report/ https://youtu.be/AmUC4m6w1wo
AI-powered attacks • Targeted phishing attacks rely on Twitter data • Neural networks produce a better password cracker https://arxiv.org/pdf/1709.00440.pdf • Generative Adversarial Networks learn novel steganographic channels • XEvil breaks 1000's of existing catchas • Remember that your webcam may be watching you To learn more about GANs https://securityintelligence.com/generative-adversarial-networks-and-cybersecurity-part-1/ https://securityintelligence.com/generative-adversarial-networks-and-cybersecurity-part-2/
AI & Security : The Good, the Bad and the Ugly • The Good : AI improves security • The Bad : AI becomes a weapon for attackers • The Ugly : AI applications can be attacked
AI Can Be Attacked Direct Attack Theft (IC or data) https://qz.com/823820/carnegie-mellon-made-a-special-pair-of-glasses-that-lets-you-steal-a-digital-identity/
AI Can Be Fooled • Model poisoning Darpa - noise - https://www.darpa.mil/attachments/AIFull.pdf • Noise Introduction Proof of Concept https://iotsecurity.eecs.umich.edu/#roadsigns https://arxiv.org/abs/1707.08945 • Reinforcement TAY Microsoft - reinforcement - http://images.complex.com/complex/image/upload/t_in_content_image/tay-hitler_o4kq62.jpg
AI Can Also Be Poorly Implemented https://www.theverge.com/2018/1/12/16882408/google-racist-gorillas-photo-recognition-algorithm-ai • Poor Categories Google - categories - • Overfitting • Convergence of views Underfitting vs overfitting https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
AI risks go beyond "traditional" security • Privacy ̶ GDPR - Data Protection & Right To Be Forgotten ̶ Welcome to 1984 ! • Transparency ̶ Am I currently scrutinized by an AI ? ̶ Can you explain why your bot made this decision ? • Accountability ̶ An autonomous car accident occurs : Who is responsible ? ̶ What about a robot purchasing illegal items on the darkweb ? https://www.independent.co.uk/arts-entertainment/art/news/swiss-artists-programme-laptop-to-make-random-purchases-from-the-dark-web-a6761891.html • Ethics
Ethics & Responsability You are "driving" your autonomous car. Suddenly in a curve… No escape …
Ethics & Responsability Who would you hurt? - The black car? - The white car? - Yourself?
Ethics & Responsability The audience usually chooses the white car. After all, it should not be driving this side of the road.
Ethics & Responsability What if the black one has a single driver, while the white one conveys 2 babies + their mom ?
Ethics & Responsability You do not know it, but your car's thermal camera does…
Ethics & Responsability Moral can even be evaluated online… Who would you hurt? - The black car? - The white car? - Yourself? http://moralmachine.mit.edu/
AI & Security : The Good, the Bad and the Ugly • The Good : AI improves security • The Bad : AI becomes a weapon for attackers • The Ugly : AI applications can be attacked In the end, the Good wins !
Attacks against AI: Countermeasures Data Security Training data & privacy Model Security Robust and resilient models Operations Security Detect and eliminate adversarial inputs Non-trusted Trusted SME Robust Models Actor Detection Training Training Data 1. Data Security 2. Model Security 3. Operations Security
Zoom Into Model Security https://securityintelligence.com/adversarial-ai-as-new-attack-vector-opens-researchers-aim-to-defend-against-it/ eXplainable Artificial Intelligence (XAI)
3 Guiding Principles For Cybersecurity XXXX By Design Think about security since the inception phase Include privacy, transparency, ethics in the design process XXXX By Default Deny everything to everyone by default Grant access when it is required - on a Need-To-Know basis XXXX Impact Assessment GDPR introduced the PIA : Privacy Impact Assessment Reuse an extend the concept Apply these 3 principles to AI
Vous pouvez aussi lire