Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
Observations multi-messager d’une coalescence de système binaire d’étoiles à neutrons Damir Buskulic Séminaire d’insertion professionnelle M2 PSC 20 octobre 2017
Détection d’ondes gravitationnelles Par le réseau de détecteurs interférométriques Advanced LIGO – Advanced Virgo LSC : ~900 membres Virgo : ~200 membres ~80 institutions 19 laboratoires de ~15 pays de 5 pays Depuis 2007, LVC = LIGO-Virgo Collaboration 2
Ondes gravitationnelles ▶ Masses : accélération du moment ▶ Onde plane transverse quadripolaire ▶ Se propage à la vitesse de la lumière ▶ Déformation de l’espace-temps ▶ Deux polarisations (+ et x) ▶ Onde gravitationnelle ▶ Effet sur un ensemble de masses test en chute libre 3
Ondes gravitationnelles ▶ Production : ▶ Distribution de masses : accélération du moment quadripolaire ▶ Exemples ▶ M = 1000 kg, R = 1 m, f = 1 kHz, r = 300 m h ~ 10-35 ▶ M = 1.4 M⦿ , R = 20 km, f = 400 Hz, r = 1023 m (15 Mpc = 48,9 Mlyr ) h ~ 10-21 4
Interféromètre de Michelson : un “capteur” d’ondes gravitationnelles Diagramme d’antenne Moyenne sur les polarisations 5
Résumé des runs O1 et O2 2015 2016 2017 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 O1 O2a Aujourd’hui 12/09/2015 19/01/2016 30/11/2016 25/08/2017 01/08/2017 LVT151012 GW150914 GW151226 GW170104 GW170814 Premier événement Virgo! GW170817 + détections multi-messagers! O2 cycles utiles : ●LIGO H1: ~60% ●LIGO L1: ~60% ●Virgo V1: ~80% (O2b) 6
Recherche de la coalescence d’un système binaire d’objets compacts ▶ Cible : Signal venant de la coalescence d’un système binaire d’objets compacts ▶ Etoiles à neutrons (BNS), Etoiles à neutrons + Trou noir (NS-BH), Trou noir binaire (BBH) ▶ Phases de la coalescence: ▶ Spiralante (Inspiral) ▶ Masses m1 et m2 en orbite l’une autour de l’autre ▶ Emission d’OG ▶ Frequence ↗, amplitude ↗ ▶ Forme d’onde caractérisée par la « masse chirp » Time ▶ Fusion (Merger) : Calculs de relativité numérique ▶ Relaxation (Ringdown) : décomposition en mode quasi-normaux 7
Recherche de la coalescence d’un système binaire d’objets compacts ▶ Principe de l’analyse : recherche avec calque ▶ Production d’une banque de calques (formes d’onde théoriques) Test template ▶ Filtrage adapté = inter-corrélation pondérée signal/calque
Recherche de la coalescence d’un système binaire d’objets compacts ▶ Principe de l’analyse : recherche avec calque ▶ Production d’une banque de calques (formes d’onde théoriques) ▶ Filtrage adapté = inter-corrélation pondérée signal/calque Densité spectrale de bruit Signal caché dans le bruit Calque du détecteur Ä / Résultat du filtrage adapté : r(t) Evénement "Z # candidat • ã( f ).T e ⇤( f ) hã, Tei = 2 d f + c.c. 0 Sn( f ) Seuil ▶ Très sensible à l’évolution de la phase 9
Recherche de la coalescence d’un système binaire d’objets compacts ▶ Paramètres intrinsèques 4 ▶ masses, tive spins to BBH(mergers alignés with)total dirigent mass ⇠ 30 M or greater [60]. arXiv:1606.04856 [gr-qc] A bank of template waveforms is used to cover the parame- la dynamique du système | 1 | < 0.9895, | 2 | < 0.05 ▶ ter space to be searched [53, 61–64]. The gravitational wave- | 1,2 | < 0.05 | 1,2 | < 0.9895 forms depend upon the masses m1,2 (using the convention that ▶ l’évolution de la forme d’onde m1 m2 ), and angular momenta S1,2 of the binary compo- GW150914 GW151226 nents. We characterise the angular momentum in terms of the LVT151012 (gstlal) espace de paramètres 4-D balayé avec m2 [M ] 101 ▶ dimensionless spin magnitude LVT151012 (PyCBC) ~250,000 calques a1,2 = c |S1,2| , (2) Gm21,2 and the component aligned with the direction of the orbital ▶ Paramètres extrinsèques angular momentum, L, of the binary [65, 66], 100 c Position dans le ciel, orientation de la binaire, 0 1 2 ▶ c1,2 = S1,2 · L̂ . (3) 10 10 10 Gm21,2 m [M ] 1 phase initiale,… We restrict this template bank to systems for which the spin impacte of the systems is aligned (or anti-aligned) with the orbital an- FIG. 2. The four-dimensional search parameter space covered by the template bank shown projected into the component-mass plane, gular momentum of the binary. Consequently, the waveforms using the convention m > m . The colours indicate mass regions ▶ le temps d’arrivée primarily upondu signal 1 2 depends the chirp mass [67–69] with different limits on the dimensionless spin parameters c and 1 c . Symbols indicate the best matching templates for GW150914, ▶ l’amplitude globale et la1 mphase 2 (m 3/5 2) GW151226 and LVT151012. For GW150914, GW151226 the tem- M= , (4) M 1/5 plate was the same in the PyCBC and GstLAL searches while for ▶ On maximise dessus the mass ratio [18] LVT151012 they differed. The parameters of the best matching tem- plates are not the same as the detector frame masses provided by the detailed parameter estimation discussed in Section IV. m2 q= 1, (5) m1 10 and the effective spin parameter [70–73] non-stationary transients in the data. Events are assigned a
Taux de fausse alarme ▶ Taux de fausse alarme ▶ Mesuré avec le bruit de fond estimé à partir des données ▶ Décalages temporels de N x 0.1 s entre H1 et L1 L1 H1 L1-100s time ▶ Cas de GW150914, première analyse pour l’annonce ▶ Nmax = 107 décalages, Tfond = 200,000 ans ▶ GW150914 plus fort que tous les fonds â limite basse sur la significativité ▶ Importance du veto des perturbations environementales. ▶ Surveillance par un réseau de capteurs ▶ ~105 canaux pour chaque détecteur 11
GW170814 : le premier événement Virgo ! ▶ Détecté le 14 août 2017 à 10:30:53 UTC ▶ Rapport signal sur bruit combiné (SNR) = 18 ▶ Taux de fausse alarme f < 1 sur 27000 ans -> une coalescence de binaire de trous noirs comme le premier événement découvert GW150914 12
C’est mieux avec Virgo ! Meilleure localisation de la source Premiers tests de polarisation de l’OG Relativité générale → 2 modes de polarisation Théories métriques de la gravité en général → 6 modes autorisés Avec les deux LIGO seuls : 700 deg2 En incluant Virgo: 80 deg2 Localisation 2D Nouveaux tests avec GW170814 → aire dans le ciel réduite d’un facteur ~10 Un interféromètre est sensible à une OG projetée sur le mode + local du détecteur. Localisation 3D Étude des modes de polarisation de l’onde avec plusieurs → Volume dans le ciel réduit d’un facteur ~20 détecteurs orientés différemment. → mode « purs » + et x favorisés par rapport aux polarisations pures scalaire/vecteur (mélanges de polarisations pas encore testés) 13
Masses des objets binaires compacts Trous noirs binaires Etoiles à neutrons 14
Physique avec les TN binaires Formation des TN binaires Détermination de la distribution et du taux de coalescence de la population de TN binaires Evolution d’étoiles binaires (défavorisé ?) Implications Estimation du fond astrophysiques Capture de TN stochastique d’OG isolés des coalescences de TN binaires Limites sur la masse du graviton et une violation de l’invariance de Lorentz Vérification de la cohérence interne de la forme d’onde Tests de la RG Recherche de déviations de la RG dans la forme d’onde 15
▶ Première détection multi-messager d’une coalescence d’étoiles à neutrons : GW170817 ▶ Signal d’OG ▶ Association avec un sursaut gamma (GRB) ▶ Suivi électromagnétique et kilonova ▶ Mesure de la constante de Hubble ▶ Recherche de neutrinos 16
Coalescence dans les données LIGO-Virgo ▶ Détecté le 17 août 2017 à 12:41:04.4 UTC ▶ Rapport signal sur bruit combiné (SNR) = 32.4 ▶ Signal faible dans Virgo ▶ Taux de fausse alarme f < 1 sur 80000 ans ▶ Sensibilité la plus faible + orientation défavorable ▶ Ne participe pas à la détection ▶ Mais effet significatif sur l’estimation de paramètres ▶ En particulier la localisation Diagramme d’antenne projeté sur la Terre (sombre = moins sensible) LIGO (Livingston) Virgo 17
Localisation de la source GW170817 ▶ La source du signal est la plus proche et la mieux localisée jusqu’à aujourd’hui ▶ Déclenchement d’observations de suivi EM et neutrinos ▶ Identification de NGC4993 comme galaxie hôte 18
Comparaison des signaux détectés Coalescence de binaires de TN Signaux courts ( information sur le type de source et ses paramètres 19
Paramètres intrinsèques Masses des objets Equation d’état des étoiles à neutrons Dégénérescence entre le Trace dans la Champ de marée Déformation de rapport des masses et les forme de l’OG, du compagnon l’étoile à neutrons composantes alignées des pour f>600 Hz spins La collision se produit plus tôt que sans effet de marée, spin final modifié Résultat en défaveur des équations d’état qui prédisent une étoile moins compacte : rayon < 15 km Masses cohérentes avec des étoiles à neutrons 20
Contreparties électromagnétiques ▶ Sursaut gamma court (sGRB) : ▶ Jet ▶ Emission gamma rapide (prompt) ▶ Quelques secondes après la fusion ▶ Durée < 2 s ▶ Focalisée ▶ Interaction du jet avec le milieu interstellaire ▶ Emission rémanente (afterglow) ▶ Quelques jours après la fusion ▶ Evolution rayons X -> radio ▶ Kilonova ▶ Conversion de la matière éjectée dans des éléments issus d’un processus r (r-process), désintégration et émission thermique ▶ Continuum de corps noir + structures larges ▶ Quelques heures/jours après la fusion ▶ UV / optique / IR ▶ Évolution spectrale rapide 21
▶ Première détection multi-messager d’une coalescence d’étoiles à neutrons : GW170817 ▶ Signal d’OG ▶ Association avec un sursaut gamma (GRB) ▶ Suivi électromagnétique et kilonova ▶ Mesure de la constante de Hubble ▶ Recherche de neutrinos 22
▶ GRB170817A détecté par Fermi et INTEGRAL Localisation sur le ciel ▶ Emission gamma ~ 1.7 s après la fusion (90% CL) ▶ 3 fois plus probable d’être un GRB court (vs long) Probabilité d’une association aléatoire : 5.0 x 10-8 -> association validée à 5.3 s Première preuve que les fusions d’étoiles à neutrons sont les progéniteurs des GRB courts (au moins certains) 23
Newi nsi ghti ntogamma- raybur sts GW170817 waveform → loose limit on BNS viewing angle, but degeneracy with source distance ● F < 56° from GW data alone ● F < 36° using the known distance to the host galaxy NGC 4993 → compatible with jet pointing towards Earth GRB170817A: ● the closest short GRB with know distance (z~0.008) (previous closest, GRB061201: z ~0;11) ● 10 to 106 times less energetic than other bursts 2 → implications/questions on the structure of the jet Prediction of detection rates ●higher rate than previously expected for sGRB to be seen in gamma-rays ●1-50 BNS mergers expected in LIGO-Virgo during run O3 (wrt previously estimated 0.04-100) → 0.1 to 1.4 joint detections for GW and Fermi sGRB during run O3 (end 2018-2019) Abbot at al., ApJ, 848, 13 (2017) L. Rolland - 10 novembre 2017 - LAPP 24 19
Association GW/GRB : célérité des OG Emission lors de la fusion Propagation -> OG et rayons g sur au moins 26 Mpc Détection OG Rayons g Hypothèse : rayons g détectés les g sont émis entre s après les OG 0 et 10 s après les OG de fusion Différence entre la célérité des OG et la vitesse de la lumière 25
▶ Première détection multi-messager d’une coalescence d’étoiles à neutrons : GW170817 ▶ Signal d’OG ▶ Association avec un sursaut gamma (GRB) ▶ Suivi électromagnétique et kilonova ▶ Mesure de la constante de Hubble ▶ Recherche de neutrinos 26
T0 T0 + 1.7 s T0 + 5 h T0 + 11 h T0 + 11h T0 + 9 j T0 + 16 j Détection Détection Localisation Contrepartie Galaxie hôte Contrepartie Contrepartie GW GRB GW optique NGC4993 X radio 27
Evolution du transitoire optique IR proche Rouge Bleu / UV Bleu IR proche IR moyen Courbes de lumière Evolution du spectre ▶ Bon accord avec les modèles de kilonova (=macronova) ▶ Première identification spectroscopique d’une kilonova ▶ Probablement la source principale d’éléments lourds dans l’univers 28
▶ Première détection multi-messager d’une coalescence d’étoiles à neutrons : GW170817 ▶ Signal d’OG ▶ Association avec un sursaut gamma (GRB) ▶ Suivi électromagnétique et kilonova ▶ Mesure de la constante de Hubble ▶ Recherche de neutrinos 29
Mesure de la constante de Hubble H0 = taux d’expansion GW170817 peut être utilisée comme sirène standard de l’univers aujourd’hui Estimée directement Déterminée avec le du signal OG : redshift de la galaxie hôte à En déduit Mesure indépendante de H0 à pourra aider à comprendre la « tension » courante 30
Liste non exhaustive des études en cours/à faire ▶ Implications astrophysiques ▶ Formation des binaires de neutrons / trous noirs ▶ Origine des GRB, focalisation du jet ▶ Modélisation des kilonovae ▶ Equation d’état des NS (neutron star) ▶ Etoile à neutron résidu de la fusion : durée de vie longue ou courte ? ▶ Inférence de la distribution de population BNS et du taux de coalescence ▶ Estimation du fond stochastique d’OG de coalescences de BNS ▶ Détecté dans les années à venir ▶ Tests de RG ▶ Différence entre célérité des OG et c ▶ Recherche de déviations à la RG dans la forme d’onde ▶ Etude de la polarisation des OG ▶ Nouvelles limites à la violation de l’invariance de Lorentz ▶ Nouveau test du principe d’équivalence ▶ Cosmologie ▶ Mesure indépendante de la constante de Hubble 31
Le futur du coin de l’œil… Living Rev. Relativity, 19, (2016), 1 32
Conclusion ▶ Premières… ▶ Premier tests de la polarisation d’une OG ▶ Première observation de la coalescence d’une binaire à neutrons ▶ Première association BNS – GRB court ▶ Première observation photométrique d’une kilonova ▶ Première mesure de la constante de Hubble avec les OG ▶ A l’avenir, on espère ▶ Détection d’une coalescence étoile à neutrons-trou noir ▶ Détection du fond stochastique BNS et BBH ▶ Détection d’une OG de supernova ▶ Plus de détections multi-messagers ▶ Et il y a du travail sur les OG continues (pulsars) et sur les transitoires non modélisés ▶ Et on prépare LIGO et Virgo pour le run O3 à l’automne 2018 33
▶ Spares 34
What does Virgo look like ? 35
What does LIGO look like ? 36
▶ Horizon = distance at which a reference compact body coalescence gives a SNR (Signal over Noise Ratio) of 8 in the detectors ▶ Picture : reference = 2 x 1.4 M⦿ neutron star coalescence, average orientation ▶ Sensitivity x 10 ó Sensitive volume x 103 37
Black holes coalescences ? Yes ! ▶ Example of GW150914 ▶ Over 0.2 s, frequency and amplitude increase from 35 Hz to fpeak = 150 Hz (~ 8 cycles) ▶ Reminder : the “chirp mass” characterizes the inspiral phase ▶ Finds , ▶ Keplerian separation gets close to Schwarzschild radius ▶ Very close and compact objects ▶ BNS too light, NSBH merge at lower frequency ▶ Decay of waveform after peak ▶ consistent with damped oscillations of BH (relaxing to final stationary Kerr configuration) ▶ SNR too low to claim observation of quasi normal modes 38
CBC BBH search result : GW150914 2 3 4 5 >5 Statistic arXiv:1606.04856 [gr-qc] ▶ 104 2 3 4 5 >5 103 Search Result ▶ Search Background 102 Background excluding GW150914 101 Number of events ▶ 100 10 1 Significance 10 2 ▶ 3 GW150914 10 ▶ GW150914 is the loudest event in the 10 4 5 10 search, = 22.7 10 6 10 7 10 8 ▶ Individual triggers in L1 and H1 8 10 12 14 16 18 20 22 24 Detection statistic ˆc (forming GW150914): highest in each detector ▶ Significance Coincidences between single Background excluding contribution detector triggers from GW150914 from GW150914 (gauge significance and noise in other detector of other triggers) 39
Testing GR with GW150914 (II) ▶ No evidence for deviation from GR in waveform arXiv:1606.04856 [gr-qc] ▶ No evidence for dispersion in signal propagation FIG. 6. Posterior density distributions and 90% credible intervals for relative deviations d p̂i in the PN parameters pi , as well ▶ Bounds : bi and merger-ringdown parameters ai . The top panel is for GW150914 by itself and the middle one for GW15 parameters while the bottom panel shows combined posteriors from GW150914 and GW151226. While the posteriors for deviations in from GW150914 show large offsets, the ones from GW151226 are well-centered on zero as well as being more tight, causing posteriors to similarly improve over those of GW150914 alone. For deviations in the bi , the combined posteriors improve over event individually. For the ai , the joint posteriors are mostly set by the posteriors from GW150914, whose merger-ringdo frequencies where the detectors are the most sensitive. ▶ More constraining than bounds from up to 3.5PN. Since the source of GW151226 merged at merical waveforms and tend to multiply speci ▶ Solar ⇠ 450System observations Hz, the signal provides the opportunity to probe the f , and they characterize the gravitational-wave a PN inspiral with many more waveform cycles, albeit at rel- phase in different stages of the coalescence proc ▶ binary pulsar atively low SNR.observations Especially in this regime, it allows us to allow for possible departures from general rela ▶ Lesstighten constraining further our than boundsmodel dependent on violations bounds from of general relativity. As in [41], to analyze GW151226 we start from the IMR- eterized by a set of testing coefficients d p̂i , w form of fractional deviations in the pi [135, 13 ▶ large Phenomscale dynamics waveform of[35–37] model of galactic clusters which is capable of de- replace pi ! (1 + d p̂i ) pi and let one or more of scribing inspiral, merger, and ringdown, and partly accounts freely in addition to the source parameters tha ▶ weak gravitational lensing observations for spin precession. The phase of this waveform is charac- 40 in pure general relativity waveforms, using the terized by phenomenological coefficients {pi }, which include ativity expressions in terms of masses and spi themselves. Our testing coefficients are those
Future Localization Prospects Face-on BNS @ 80 Mpc 2016-17 2017-18 Face-on BNS @ 160 Mpc 2019+ 2022+ HLV = Hanford-Livingston-Virgo HILV = Hanford-LIGO India-Livingston-Virgo 41
From one generation to the next (II) Terrestrial detectors Einstein Telescope (ET) Advanced LIGO, Advanced Virgo, GEO HF, KAGRA Foundations of multi-messenger astronomy First detection Enhanced LIGO, Virgo+ Initial LIGO, Virgo, GEO600 First generation Second generation Third generation Data taking Towards routine observations, In-depth observation of Rates upper limits GW astronomy the universe with GW Building the network 42
Table 3 Summary of a plausible observing schedule, expected sensitivities, and source localization with the Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the Plan and sensitivity evolution detectors’ commissioning progress. Ranges reflect the uncertainty in the detector noise spectra shown in Figure 1. The achieved binary neutron star (BNS) ranges for 2016 – 2017 are characteristic of performance to date, not for the complete run. The burst ranges assume standard-candle emission of 10 2 M c2 in 1/2 gravitational waves at 150 Hz and scale as EGW , so it is greater for more energetic sources (such as binary Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 5 black holes). The BNS localization is characterized by the size of the 90% credible region (CR) and the searched area. These are calculated by running the BAYESTAR rapid sky-localization code [189] on a Advanced LIGO Advanced Virgo Monte Carlo sample of simulated signals, assuming senisivity curves in the middle of the plausible Living Rev. Relativity, 19, (2016), 1 ranges (the geometric meansMidof(2016the upper and lower bounds). The variation Early (2015 – 16, 40 – 80 Mpc) – 17, 80 – 120 Mpc) in the localization reflects both the Early (2017, 20 – 65 Mpc) Mid (2018 – 19, 65 – 85 Mpc) variation in duty cycleLatebetween (2018 – 19, 120 –70% 170 Mpc)and 75% as well as Monte Carlo statistical uncertainty. The estimated 1/2 1/2 Late (2020 – 21, 65 – 115 Mpc) number of BNS detections uses Design (2020, 190 Mpc) the actual BNS for 2015 – 2016, and the 125 Design (2021, expected Mpc) range otherwise; future Strain noise amplitude/Hz Strain noise amplitude/Hz 21 21 10 10 BNS-optimized (210 Mpc) BNS-optimized (140 Mpc) runs assume a 70 – 75% duty cycle for each instrument. The BNS detection numbers also account for the uncertainty in the BNS source rate density [73]. Estimated BNS detection numbers and localization estimates are computed assuming a signal-to-noise 10 22 10 ratio greater than 12. Burst localizations are expected to 22 be broadly similar to those derived from timing triangulation, but vary depending on the signal bandwidth; the median burst searched area (with a false alarm rate of ⇠ 1 yr 1 ) may be a factor of ⇠ 2 – 3 larger than the values quoted for BNS signals [202]. No burst detection numbers are given, since the source rates 23 23 10 10 are currently unknown. Numbers for 2016 – 2017 include Virgo, and do not take into account that Virgo only joined the observations for the latter part the run. The 2024+ scenario includes LIGO-India at design 24 24 sensitivity. 10 10 1 2 3 1 2 3 10 10 10 10 10 10 Frequency/Hz Frequency/Hz KAGRA Opening (2018 – 19, 3 – 8 Mpc) Epoch 2015 – 2016 2016 – 2017 2018 – 2019 Early (2019 – 20, 8 – 25 Mpc) 2020+ 2024+ 1/2 Planned run duration 4 months 9 months 12 months Mid (2020 – 21, 25 – 40 Mpc) (per year) (per year) Late (2021 – 22, 40 – 140 Mpc) Strain noise amplitude/Hz 21 LIGO 40 140 – 60 60 – 75 75 – 90 105 105 10 Design (2022, Mpc) Expected burst range/Mpc Virgo — 20 – 40 40 – 50 40 – 70 80 KAGRA — 22 — — — 100 10 LIGO 40 – 80 80 – 120 120 – 170 190 190 Expected BNS range/Mpc Virgo — 20 – 65 65 – 85 65 – 115 125 10 KAGRA — 23 — — — 140 LIGO 60 – 80 60 – 100 — — — Achieved BNS range/Mpc Virgo — 25 – 30 — — — 10 KAGRA — 24 1 2 — — 3 — — 10 10 10 Estimated BNS detections Frequency/Hz 0.002 – 2 0.007 – 30 0.04 – 100 0.1 – 200 0.4 – 400 Actual BNS detections 0 — — — — Fig. 1 Regions of aLIGO (top left), AdV (top right) 2 and KAGRA (bottom) target strain sensitivities as a function of frequency. The%binary 5 deg neutron star (BNS)
Generic Transient Search q Operates without a specific search model ▶ Identifies coincident excess power in time- frequency representations of h(t) ▶ Frequency < 1 kHz ▶ Duration < a few seconds q Reconstructs signal waveforms consistent with common GW signal in both detectors using multi-detector maximum likelihood method q Detection statistic Ec: dimensionless coherent signal energy obtained by cross-correlating the two reconstructed waveforms Ø En: dimensionless residual noise energy after reconstructed signal is subtracted from data q Signals divided into 3 search classes based on their time-frequency morphology Ø C3 : Events with frequency increasing with time – CBC like 44
Expected BBH Stochastic Background ▶ GW150914 suggests population of BBH with relatively high mass ▶ Stochastic GW background from BBH could be higher than expected ▶ Incoherent superposition of all merging binaries in Universe ▶ Dominated by inspiral phase ▶ Estimated energy density ▶ Statistical uncertainty due to poorly constrained merger rate currently dominates model uncertainties ▶ Background potentially detectable by Advanced LIGO / Advanced Virgo at projected final sensitivity 45
Sensitivity Phys. Rev. Lett. 116, 131103 (2016) Seismic noise S6 Improved O1 seismic aLIGO isolation design Future upgrade Thermal noise Quantum noise Monolithic suspensions Higher laser power Improved mirror coatings Thermal compensation Larger beam size Signal recycling DC detection 46
Intrinsic Parameters week ending L 116, 241103 (2016) PHYSICAL REVIEW LETTERS 17 JUNE 2016 arXiv:1606.04856 [gr-qc] Inspiral PRL 116, 241103 (2016) Merger + Ringdown ▶ Encoded in GW signal : . 5. Estimated gravitational-wave strain from GW151226 projected onto the LIGO Livingston detector with times relative to ▶ Inspiral ember 26, 2015 at 03:38:53.648 UTC. This shows the full bandwidth, without the filtering used for Fig. 1. Top: The 90% credible on (as in [57]) for a nonprecessing spin waveform-model reconstruction (gray) and a direct, nonprecessing numerical solution of 8 ▶chirp mass, mass ratio, spin components stein’s equations (red) with parameters consistent with the 90% credible region. Bottom: The gravitational-wave frequency f (left ) computed from the numerical-relativity waveform. The cross denotes the location of the maximum of the waveform amplitude, roximately coincident with the merger of the two black holes. During the inspiral, f can be related to an effective relative velocity arXiv:1606.04856 [gr-qc] ▶Additional spin effect ht axis) given by the post-Newtonian parameter v=c ¼ ðGMπf=c3 Þ1=3, where M is the total mass. If not // orbital angular VI. ASTROPHYSICAL▶IMPLICATIONS momentum: evolutionary history of orbital plane the observed black hole mergers are further discussed in [5]. precession The inferred black hole masses are within the range of namically measured masses of black holes found in x-ray The first observing period of Advanced LIGO provides evidence for a population of stellar-mass binary black holes liesAmplitude and phase to a modulation ck hole, there is a probability of 4% that itâ aries [76–80], unlike GW150914. For the secondary contributing stochastic background that could be in the higher than previously expected [87]. Additionally, we ited 3–5M ⊙ gap between observed neutron star and ▶ ck hole masses [76,77], Merger and ringdown and there is no support for the find the rate estimate of stellar-mass binary black hole mergers in the local Universe to be consistent with the mary black hole to have a mass in this range. ranges presented in [88]. An updated discussion of the rate Binary black hole formationPrimarily governed by final black hole mass and ▶ has been predicted through a ge of different channels involving either isolated binaries estimates can be found in [5]. A comprehensive discussion of inferred source param- spin dynamical processes in dense stellar systems [81]. At sent all types of formation channels predict binary black eters, astrophysical implications, mass distributions, rate estimations, and tests of general relativity for the binary e merger rates and black hole masses consistent with the Masses and spins of binary fully determine mass and ▶ GW150914 [82–84]. Both ervational constraints from black hole mergers detected during Advanced LIGO’s first observing period may be found in [5]. ssical isolated binary evolution through the common spin of final black hole in general relativity elope phase and dynamical formation are also consistent VII. CONCLUSION FIG. 4. Posterior probability densities of the masses, spins and distance to the th h GW151226, whose formation time and time delay to two dimensional distributions, the contours show 50% and47 90% credible regions. rger cannot be determined from the merger observation. LIGO has detected a second gravitational-wave the convention that msource signal events. We use 1 msource 2 , which produces the sharp en our current understanding of massive-star evolution, from the coalescence of two stellar-mass black holes with measured black hole masses are also consistent with any lower masses than those measured for GW150914. the contours follow lines of constant chirp mass (M source = 8.9+00 LVT151012, Public
Extrinsic Parameters arXiv:1606.04856 [gr-qc] ▶ Amplitude depends on masses, distance, and geometrical factors ▶ Distance – inclination degeneracy ▶ Source location on the sky FIG. 4. Posterior probability densities of the masses, spins and distance to the three events GW150914, LVT151012 and GW151226. For the two dimensional distributions, the contours show 50% and 90% credible regions. Top left: component masses msource and msource for the three Interf. B events. We use the convention that m1 source m2source ▶ inferred primarily from 1 2 , which produces the sharp cut in the two-dimensional distribution. For GW151226 and LVT151012, the contours follow lines of constant chirp mass (M source =▶8.9time 0.3 M of +0.3 andflight M source = 15.1+1.4 1.1 M for respectively). GW150914 In all three cases, both masses are consistent with being black holes. Top right: The mass and dimensionless spin magnitude of the final black holes. Bottom left: The effective spin and mass ratios of the binary components. ▶ amplitude Bottom and phase right: The luminosity distanceconsistency to the three events. ▶ Limited accuracy with two detector a greater impact upon the inspiral. We find that smaller spins Observations for all three events are consistent with small Interf. A are favoured, and place 90% credible bounds on the primary network values of the effective spin: |ceff | 0.17, 0.28 and 0.35 at spin a1 0.7 for GW150914, a1 0.7 for LVT151012, and▶ 90% probability 2-D 90% for GW150914, credible region LVT151012 230 deg2and GW151226 a1 0.8 for GW151226. In the case of GW151226, we infer respectively. This indicates that large parallel spins aligned or that at least one of the components has a spin of 0.2 at the (GW150914) antialigned with the orbital angular momentum are disfavored. 99% credible level. ▶ 3-DIt may uncertainty be possiblevolume contains to place tighter constraints on each com- While the individual component spins are poorly con- ponent’s ~10 spinWay 5 Milky by using waveforms equivalent that include the full effects galaxies 48 PRL 116, 241102 strained, there are combinations that(2016) can be better inferred. of precession [39]. This will be investigated in future analy- The effective spin ceff , as defined in Equation 6, is a mass- ses.
Testing GR ▶ Most relativistic binary pulsar known today ▶ J0737-3039, orbital velocity ▶ GW150914 ▶ Strong field, non linear, high velocity regime ▶ “Loud” SNR -> coarse tests ▶ Waveform internal consistency check ▶ No evidence for deviation from General Relativity in waveform ▶ Bound on Compton wavelength (graviton mass) ▶ No evidence for dispersion in signal propagation ▶ More contraining than bounds from the solar system ▶ Less constraining than model dependent bounds from large scale dynamics of galactic clusters 49
Rate of BBH mergers 0.6 arXiv:1606.04856 [gr-qc] Event Based total GW150914 Astrophysical rate inference 0.5 ▶ LVT151012 ▶ Counting signals in experiment 0.4 GW151226 Estimating sensitivity to population of sources R p(R) ▶ 0.3 ▶ Depends on mass distribution (hardly known) 0.2 FIG. 11. The posteri ferred masses for our LVT151012, and GW 0.1 a = 2.35 that correspo infer the rate of BBH the posterior, which a 0.0 median and 90% cred Low statistics and variety of assumptions 10 1 100 101 102 ▶ R (Gpc 3 yr 1 ) -> broad rate range more, due to the ob cant signal GW151 ▶ R ~ 9 – 240 Gpc-3 yr-1 FIG. 9. The posterior density on the rate of GW150914-like BBH, In particular, the 90 arXiv:1606.04856 [gr-qc] Probability of N>10, N>35 and N>70 LVT151012-like BBH, and GW151226-like BBH mergers. The to 9–240 Gpc 3 yr event based rate is the sum of these. The median and 90% credi- ▶ Previsously : R ~ 0.1 – 300 Gpc-3 yr-1 ble levels are given in Table II. N>35 flat in log mass popu law population distr (electromagnetic observations and population modeling) With three signifi and GW151226, all N>10 ity, we can begin t lescing BBHs. Her the mass distributio method that can fit ▶ Project expected number of highly significant events sented in future wo fully in Appendix D as a function of surveyed time x volume N>70 We assume that t alescing binaries fo with Mmin m2 m distribution on the s V x T relative to V x T of O1 50 m1 . With a = 2.35 distribution used in is driven by a desi
Astrophysics implications ▶ Relatively massive black holes (> 25 M) exist in nature ▶ Massive progenitor stars => low mass loss during its life => weak stellar wind ▶ Metallicity = proportion of elements heavier than He ▶ High metallicity => strong stellar wind ▶ => formation of progenitors in a low metallicity environment 51
Astrophysics implications ▶ Binary black holes form in nature ▶ Formation : ▶ Isolated binaries ▶ Dynamical capture (dense stellar regions) ▶ Detected events do not allow to identify formation channel ▶ Future : information on the spins can help ▶ Binary Black Holes merge within age of Universe at detectable rate ▶ Inferred rate consistent with higher end of rate predictions (> 1 Gpc-3 yr-1) 52
53
54
Vous pouvez aussi lire