Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP

 
CONTINUER À LIRE
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Observations multi-messager d’une coalescence de
      système binaire d’étoiles à neutrons

                    Damir Buskulic

        Séminaire d’insertion professionnelle M2 PSC
                      20 octobre 2017
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Détection d’ondes gravitationnelles
                 Par le réseau de détecteurs interférométriques
                         Advanced LIGO – Advanced Virgo
LSC : ~900 membres                                                       Virgo : ~200 membres
      ~80 institutions                                                           19 laboratoires
      de ~15 pays                                                                de 5 pays

                         Depuis 2007, LVC   = LIGO-Virgo Collaboration                     2
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Ondes gravitationnelles

▶   Masses : accélération du moment           ▶   Onde plane transverse
    quadripolaire                             ▶   Se propage à la vitesse de la
                                                  lumière
▶   Déformation de l’espace-temps             ▶   Deux polarisations (+ et x)

▶   Onde gravitationnelle

        ▶   Effet sur un ensemble de masses
            test en chute libre

                                                                              3
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Ondes gravitationnelles

▶   Production :

    ▶   Distribution de masses : accélération du moment quadripolaire

                                        ▶   Exemples
                                            ▶   M = 1000 kg, R = 1 m, f = 1 kHz,
                                                r = 300 m
                                                                  h ~ 10-35

                                            ▶   M = 1.4 M⦿ , R = 20 km, f = 400 Hz,
                                                r = 1023 m (15 Mpc = 48,9 Mlyr )
                                                                   h ~ 10-21          4
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Interféromètre de Michelson :
un “capteur” d’ondes gravitationnelles
                    Diagramme d’antenne
                  Moyenne sur les polarisations

                                                  5
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Résumé des runs O1 et O2
      2015                              2016                                   2017
    09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10
                   O1                                                    O2a

                                                                                                              Aujourd’hui
  12/09/2015

                           19/01/2016

                                                          30/11/2016

                                                                                                 25/08/2017
                                                                                    01/08/2017
               LVT151012

GW150914 GW151226                                             GW170104            GW170814
                                                                           Premier événement Virgo!

                                                                                    GW170817
                                                                          + détections multi-messagers!
                                         O2 cycles utiles :
                                         ●LIGO H1: ~60%

                                         ●LIGO L1:   ~60%
                                         ●Virgo V1: ~80% (O2b)

                                                                                                                       6
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Recherche de la coalescence
              d’un système binaire d’objets compacts
▶   Cible : Signal venant de la coalescence d’un système binaire d’objets compacts
▶   Etoiles à neutrons (BNS), Etoiles à neutrons + Trou noir (NS-BH),
    Trou noir binaire (BBH)
▶   Phases de la coalescence:
    ▶ Spiralante (Inspiral)

       ▶ Masses m1 et m2 en orbite
            l’une autour de l’autre
        ▶   Emission d’OG
             ▶ Frequence ↗, amplitude ↗

        ▶   Forme d’onde caractérisée par la
            « masse chirp »

                                                                     Time
    ▶   Fusion (Merger) : Calculs de relativité numérique
    ▶   Relaxation (Ringdown) : décomposition en mode quasi-normaux
                                                                                     7
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Recherche de la coalescence
               d’un système binaire d’objets compacts
▶   Principe de l’analyse : recherche avec calque
    ▶   Production d’une banque de calques (formes d’onde théoriques)

                                     Test template

    ▶   Filtrage adapté =
        inter-corrélation pondérée
        signal/calque
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Recherche de la coalescence
                        d’un système binaire d’objets compacts
▶     Principe de l’analyse : recherche avec calque
      ▶    Production d’une banque de calques (formes d’onde théoriques)
      ▶    Filtrage adapté = inter-corrélation pondérée signal/calque
                                                                               Densité spectrale de bruit
          Signal caché dans le bruit                         Calque                  du détecteur

                                            Ä                         /
                                                                        Résultat du filtrage adapté : r(t)

                                                                                            Evénement
                     "Z                                      #                               candidat
                               • ã( f ).T
                                         e ⇤( f )
hã, Tei = 2                                        d f + c.c.
                           0           Sn( f )                        Seuil

  ▶    Très sensible à l’évolution de la phase                                                          9
Observations multi-messager d'une coalescence de système binaire d'étoiles à neutrons - Damir Buskulic - LAPP
Recherche de la coalescence
                    d’un système binaire d’objets compacts
▶   Paramètres intrinsèques                                                                                                                                  4

    ▶ masses, tive
               spins
                   to BBH(mergers
                          alignés with)total
                                         dirigent
                                             mass ⇠ 30 M            or greater [60].
                                                                                                                          arXiv:1606.04856 [gr-qc]

                         A bank of template waveforms is used to cover the parame-
          la dynamique du système
                                                                                                           | 1 | < 0.9895, | 2 | < 0.05
        ▶             ter space to be searched [53, 61–64]. The gravitational wave-
                                                                                                           | 1,2 | < 0.05
                                                                                                           | 1,2 | < 0.9895
                      forms depend upon the masses m1,2 (using the convention that
        ▶ l’évolution de la forme d’onde
                      m1 m2 ), and angular momenta S1,2 of the binary compo-
                                                                                                           GW150914
                                                                                                           GW151226
                      nents. We characterise the angular momentum in terms of the                          LVT151012 (gstlal)
        espace de paramètres 4-D balayé avec

                                                                                       m2 [M ]
                                                                                                 101
    ▶                 dimensionless spin magnitude
                                                                                                           LVT151012 (PyCBC)

        ~250,000 calques a1,2 = c |S1,2| ,                                       (2)
                                                   Gm21,2

                      and the component aligned with the direction of the orbital
▶   Paramètres extrinsèques
                      angular momentum, L, of the binary [65, 66],
                                                                                                 100
                                                  c
        Position dans le ciel, orientation de la binaire,
                                                                                                       0                           1                 2
    ▶                                     c1,2 =        S1,2 · L̂ .          (3)           10                     10                     10
                                                 Gm21,2                                                        m [M ]          1
        phase initiale,…
                 We restrict this template bank to systems for which the spin
        impacte of the systems is aligned (or anti-aligned) with the orbital an- FIG.  2. The four-dimensional search parameter space covered by
                                                                                 the template bank shown projected into the component-mass plane,
                 gular momentum of the binary. Consequently, the waveforms       using the convention m > m . The colours indicate mass regions
         ▶ le temps    d’arrivée
                         primarily upondu     signal                                                               1       2
                 depends                  the chirp mass [67–69]                 with different limits on the dimensionless spin parameters c and        1
                                                                                 c . Symbols indicate the best matching templates for GW150914,
         ▶ l’amplitude globale            et   la1 mphase
                                                                                          2
                                              (m      3/5
                                                    2)                           GW151226 and LVT151012. For GW150914, GW151226 the tem-
                                       M=                 ,                  (4)
                                                 M 1/5                           plate was the same in the PyCBC and GstLAL searches while for
    ▶   On maximise       dessus
                 the mass ratio [18]
                                                                                 LVT151012 they differed. The parameters of the best matching tem-
                                                                                 plates are not the same as the detector frame masses provided by the
                                                                                        detailed parameter estimation discussed in Section IV.
                                                 m2
                                              q=     1,                         (5)
                                                 m1                                                                                          10
                      and the effective spin parameter [70–73]                          non-stationary transients in the data. Events are assigned a
Taux de fausse alarme
▶   Taux de fausse alarme
    ▶   Mesuré avec le bruit de fond estimé à partir des données
    ▶   Décalages temporels de N x 0.1 s entre H1 et L1

                                          L1

                                          H1

                                      L1-100s

                                                                   time
    ▶   Cas de GW150914, première analyse pour l’annonce
        ▶   Nmax = 107 décalages, Tfond = 200,000 ans
        ▶   GW150914 plus fort que tous les fonds â limite basse sur la significativité

▶   Importance du veto des perturbations environementales.
    ▶   Surveillance par un réseau de capteurs
    ▶   ~105 canaux pour chaque détecteur
                                                                                      11
GW170814 : le premier événement Virgo !
▶   Détecté le 14 août 2017 à 10:30:53 UTC
▶   Rapport signal sur bruit combiné (SNR) = 18
▶   Taux de fausse alarme f < 1 sur 27000 ans

                      -> une coalescence de binaire de trous noirs
                   comme le premier événement découvert GW150914
                                                                     12
C’est mieux avec Virgo !
Meilleure localisation de la source              Premiers tests de polarisation de l’OG
                                                 Relativité générale
                                                 → 2 modes de polarisation

                                                 Théories métriques de la gravité en général
                                                 → 6 modes autorisés

   Avec les deux LIGO seuls : 700 deg2

     En incluant Virgo:      80 deg2

Localisation 2D
                                                 Nouveaux tests avec GW170814
 → aire dans le ciel réduite d’un facteur ~10    Un interféromètre est sensible à une OG projetée sur le
                                                 mode + local du détecteur.
Localisation 3D                                  Étude des modes de polarisation de l’onde avec plusieurs
 → Volume dans le ciel réduit d’un facteur ~20   détecteurs orientés différemment.
                                                        → mode « purs » + et x favorisés par rapport aux
                                                           polarisations pures scalaire/vecteur
                                                        (mélanges de polarisations pas encore testés)

                                                                                                        13
Masses des objets binaires compacts

                             Trous noirs binaires

                             Etoiles à neutrons

                                             14
Physique avec les TN binaires

                    Formation des TN binaires                             Détermination de la distribution et du taux de
                                                                          coalescence de la population de TN binaires
                  Evolution d’étoiles
                  binaires
                  (défavorisé ?)
 Implications
                                                                          Estimation du fond
astrophysiques    Capture de TN                                           stochastique d’OG
                  isolés                                                  des coalescences de
                                                                          TN binaires

                                                                          Limites sur la masse du graviton et une violation de
                                                                          l’invariance de Lorentz
                   Vérification de la
                   cohérence interne de la
                   forme d’onde

Tests de la RG
                  Recherche de déviations de la RG dans la forme d’onde

                                                                                                                           15
▶  Première détection multi-messager d’une
      coalescence d’étoiles à neutrons : GW170817

▶   Signal d’OG
▶   Association avec un sursaut gamma (GRB)
▶   Suivi électromagnétique et kilonova
▶   Mesure de la constante de Hubble
▶   Recherche de neutrinos

                                                    16
Coalescence dans les données LIGO-Virgo
▶   Détecté le 17 août 2017 à 12:41:04.4 UTC
▶   Rapport signal sur bruit combiné (SNR) = 32.4   ▶    Signal faible dans Virgo
▶   Taux de fausse alarme f < 1 sur 80000 ans            ▶    Sensibilité la plus faible + orientation défavorable
                                                         ▶    Ne participe pas à la détection
                                                         ▶    Mais effet significatif sur l’estimation de paramètres
                                                         ▶    En particulier la localisation

                                                    Diagramme d’antenne
                                                    projeté sur la Terre
                                                    (sombre = moins sensible)

                                                                                  LIGO (Livingston)           Virgo
                                                                                                                       17
Localisation de la source GW170817

▶   La source du signal est la plus proche et la mieux localisée jusqu’à aujourd’hui
▶   Déclenchement d’observations de suivi EM et neutrinos
▶   Identification de NGC4993 comme galaxie hôte

                                                                                       18
Comparaison des signaux détectés

         Coalescence de binaires de TN
              Signaux courts ( information sur le type de source et ses paramètres
                                                                                           19
Paramètres intrinsèques

Masses des objets                                Equation d’état des étoiles à neutrons
Dégénérescence entre le                                                                        Trace dans la
                                                Champ de marée       Déformation de
rapport des masses et les                                                                      forme de l’OG,
                                                du compagnon         l’étoile à neutrons
composantes alignées des                                                                       pour f>600 Hz
spins

                                                                                  La collision se produit
                                                                                  plus tôt que sans effet
                                                                                  de marée,
                                                                                  spin final modifié

                                                   Résultat en défaveur des équations d’état qui prédisent
                                                                une étoile moins compacte :
                                                                       rayon < 15 km
Masses cohérentes avec des étoiles à neutrons
                                                                                                       20
Contreparties électromagnétiques

               ▶   Sursaut gamma court (sGRB) :
                   ▶ Jet
                       ▶   Emission gamma rapide (prompt)
                       ▶   Quelques secondes après la fusion
                       ▶   Durée < 2 s
                       ▶   Focalisée

                   ▶   Interaction du jet avec le milieu interstellaire
                       ▶   Emission rémanente (afterglow)
                       ▶   Quelques jours après la fusion
                       ▶   Evolution rayons X -> radio

               ▶   Kilonova
                   ▶   Conversion de la matière éjectée dans des
                       éléments issus d’un processus r (r-process),
                       désintégration et émission thermique
                       ▶ Continuum de corps noir + structures larges
                       ▶ Quelques heures/jours après la fusion
                       ▶ UV / optique / IR
                       ▶ Évolution spectrale rapide

                                                                    21
▶  Première détection multi-messager d’une
      coalescence d’étoiles à neutrons : GW170817

▶   Signal d’OG
▶   Association avec un sursaut gamma (GRB)
▶   Suivi électromagnétique et kilonova
▶   Mesure de la constante de Hubble
▶   Recherche de neutrinos

                                                    22
▶   GRB170817A détecté par Fermi et INTEGRAL                       Localisation sur le ciel
    ▶ Emission gamma ~ 1.7 s après la fusion                              (90% CL)
    ▶ 3 fois plus probable d’être un GRB court (vs long)

                                        Probabilité d’une association aléatoire : 5.0 x 10-8
                                            -> association validée à 5.3 s
                                          Première preuve que les fusions d’étoiles à
                                         neutrons sont les progéniteurs des GRB courts
                                                      (au moins certains)
                                                                                        23
Newi
               nsi
                 ghti
                    ntogamma-
                            raybur
                                 sts
GW170817 waveform → loose limit on BNS viewing angle, but degeneracy with source distance
    ● F < 56° from GW data alone
    ● F < 36° using the known distance to the host galaxy NGC 4993
   → compatible with jet pointing towards Earth

                                                GRB170817A:
                                                   ●    the closest short GRB with know distance (z~0.008)
                                                             (previous closest, GRB061201: z ~0;11)
                                                   ●    10 to 106 times less energetic than other bursts
                                                           2

                                                       → implications/questions on the structure of the jet

    Prediction of detection rates
        ●higher rate than previously expected for sGRB to be seen in gamma-rays
        ●1-50 BNS mergers expected in LIGO-Virgo during run O3 (wrt previously estimated 0.04-100)
    → 0.1 to 1.4 joint detections for GW and Fermi sGRB during run O3 (end 2018-2019)

Abbot at al., ApJ, 848, 13 (2017)
                                           L. Rolland - 10 novembre 2017 - LAPP                               24   19
Association GW/GRB : célérité des OG

Emission lors de la fusion            Propagation
   -> OG et rayons g             sur au moins 26 Mpc                        Détection
                                        OG

                                     Rayons g

      Hypothèse :                                                         rayons g détectés
 les g sont émis entre                                                          s après les OG
 0 et 10 s après les OG                                                       de fusion

              Différence entre la célérité des OG et la vitesse de la lumière

                                                                                            25
▶  Première détection multi-messager d’une
      coalescence d’étoiles à neutrons : GW170817

▶   Signal d’OG
▶   Association avec un sursaut gamma (GRB)
▶   Suivi électromagnétique et kilonova
▶   Mesure de la constante de Hubble
▶   Recherche de neutrinos

                                                    26
T0       T0 + 1.7 s    T0 + 5 h      T0 + 11 h       T0 + 11h       T0 + 9 j       T0 + 16 j
Détection   Détection    Localisation   Contrepartie   Galaxie hôte   Contrepartie   Contrepartie
  GW          GRB            GW           optique       NGC4993            X            radio

                                                                                            27
Evolution du transitoire optique

IR proche

Rouge

Bleu / UV

                                              Bleu      IR proche    IR moyen
  Courbes de lumière
                                                     Evolution du spectre
▶    Bon accord avec les modèles de kilonova (=macronova)
▶    Première identification spectroscopique d’une kilonova
▶    Probablement la source principale d’éléments lourds dans l’univers
                                                                                28
▶  Première détection multi-messager d’une
      coalescence d’étoiles à neutrons : GW170817

▶   Signal d’OG
▶   Association avec un sursaut gamma (GRB)
▶   Suivi électromagnétique et kilonova
▶   Mesure de la constante de Hubble
▶   Recherche de neutrinos

                                                    29
Mesure de la constante de Hubble
H0 = taux d’expansion
                           GW170817 peut être utilisée comme sirène standard
de l’univers aujourd’hui

                            Estimée directement               Déterminée avec le
                                du signal OG :             redshift de la galaxie hôte

                                    à En déduit

                                             Mesure indépendante de H0
                                  à pourra aider à comprendre la « tension » courante

                                                                                         30
Liste non exhaustive
                        des études en cours/à faire
▶   Implications astrophysiques
    ▶   Formation des binaires de neutrons / trous noirs

    ▶   Origine des GRB, focalisation du jet
    ▶   Modélisation des kilonovae
    ▶   Equation d’état des NS (neutron star)
    ▶   Etoile à neutron résidu de la fusion : durée de vie longue ou courte ?
    ▶   Inférence de la distribution de population BNS et du taux de coalescence

    ▶   Estimation du fond stochastique d’OG de coalescences de BNS
        ▶ Détecté dans les années à venir

▶   Tests de RG
    ▶   Différence entre célérité des OG et c
    ▶   Recherche de déviations à la RG dans la forme d’onde
    ▶   Etude de la polarisation des OG
    ▶   Nouvelles limites à la violation de l’invariance de Lorentz
    ▶   Nouveau test du principe d’équivalence

▶   Cosmologie
    ▶   Mesure indépendante de la constante de Hubble                              31
Le futur du coin de l’œil…

                             Living Rev. Relativity, 19, (2016), 1

                                                          32
Conclusion
▶   Premières…
    ▶ Premier tests de la polarisation d’une OG
    ▶ Première observation de la coalescence d’une binaire à neutrons
    ▶ Première association BNS – GRB court
    ▶ Première observation photométrique d’une kilonova
    ▶ Première mesure de la constante de Hubble avec les OG

▶   A l’avenir, on espère
    ▶ Détection d’une coalescence étoile à neutrons-trou noir
    ▶ Détection du fond stochastique BNS et BBH
    ▶ Détection d’une OG de supernova
    ▶ Plus de détections multi-messagers

▶   Et il y a du travail sur les OG continues (pulsars) et sur les transitoires non
    modélisés

▶   Et on prépare LIGO et Virgo pour le run O3 à l’automne 2018
                                                                                      33
▶   Spares

             34
What does Virgo look like ?

                              35
What does LIGO look like ?

                             36
▶   Horizon = distance at which a
    reference compact body
    coalescence gives a SNR (Signal
    over Noise Ratio) of 8 in the
    detectors

▶   Picture : reference = 2 x 1.4 M⦿
    neutron star coalescence,
    average orientation

▶   Sensitivity x 10 ó Sensitive
    volume x 103

                                       37
Black holes coalescences ? Yes !

▶   Example of GW150914
▶   Over 0.2 s, frequency and amplitude increase
    from 35 Hz to fpeak = 150 Hz (~ 8 cycles)
    ▶ Reminder : the “chirp mass” characterizes
        the inspiral phase
    ▶   Finds                ,

    ▶   Keplerian separation gets close to
        Schwarzschild radius

    ▶   Very close and compact objects
        ▶ BNS too light, NSBH merge at lower frequency

▶   Decay of waveform after peak
    ▶   consistent with damped oscillations of BH
         (relaxing to final stationary Kerr configuration)
    ▶   SNR too low to claim observation of quasi normal modes   38
CBC BBH search result : GW150914
                                                                                     2 3       4    5                                    >5
    Statistic

                                                                                                                                               arXiv:1606.04856 [gr-qc]
▶                                                                       104          2     3                               4   5         >5

                                                                        103                         Search Result
    ▶                                                                                               Search Background
                                                                        102
                                                                                                    Background excluding GW150914
                                                                        101

                                                     Number of events
    ▶                                                                   100
                                                                        10   1

    Significance                                                        10   2
▶                                                                            3
                                                                                                                                    GW150914
                                                                        10
    ▶   GW150914 is the loudest event in the                            10   4

                                                                             5
                                                                        10
        search, = 22.7                                                  10   6

                                                                        10   7

                                                                        10   8
    ▶   Individual triggers in L1 and H1                                         8   10        12         14    16    18       20   22   24
                                                                                                        Detection statistic ˆc
        (forming GW150914): highest        in each
        detector

    ▶   Significance                                                                       Coincidences between single
                            Background excluding contribution                              detector triggers from GW150914
                            from GW150914 (gauge significance                              and noise in other detector
                            of other triggers)

                                                                                                                                          39
Testing GR with GW150914 (II)
▶   No evidence for deviation from GR in waveform

                                                                                                               arXiv:1606.04856 [gr-qc]
▶   No evidence     for dispersion in signal propagation
          FIG. 6. Posterior density distributions and 90% credible intervals for relative deviations d p̂i in the PN parameters pi , as well
    ▶ Bounds   : bi and merger-ringdown parameters ai . The top panel is for GW150914 by itself and the middle one for GW15
          parameters
          while the bottom panel shows combined posteriors from GW150914 and GW151226. While the posteriors for deviations in
              from GW150914 show large offsets, the ones from GW151226 are well-centered on zero as well as being more tight, causing
              posteriors to similarly improve over those of GW150914 alone. For deviations in the bi , the combined posteriors improve over
              event individually. For the ai , the joint posteriors are mostly set by the posteriors from GW150914, whose merger-ringdo
              frequencies where the detectors are the most sensitive.

    ▶   More   constraining than bounds from
            up to 3.5PN. Since the source of GW151226 merged at             merical waveforms and tend to multiply speci
        ▶ Solar
            ⇠ 450System       observations
                    Hz, the signal provides the opportunity to probe the     f , and they characterize the gravitational-wave a
            PN inspiral with many more waveform cycles, albeit at rel-      phase in different stages of the coalescence proc
        ▶ binary    pulsar
            atively low  SNR.observations
                                Especially in this regime, it allows us to  allow for possible departures from general rela
    ▶   Lesstighten
              constraining
                    further our than
                                boundsmodel     dependent
                                       on violations             bounds from
                                                     of general relativity.
               As in [41], to analyze GW151226 we start from the IMR-
                                                                            eterized by a set of testing coefficients d p̂i , w
                                                                            form of fractional deviations in the pi [135, 13
        ▶ large
            Phenomscale   dynamics
                     waveform           of[35–37]
                                 model of   galactic   clusters
                                                   which is capable of de-  replace pi ! (1 + d p̂i ) pi and let one or more of
            scribing inspiral, merger, and ringdown, and partly accounts    freely in addition to the source parameters tha
        ▶ weak     gravitational     lensing    observations
            for spin precession. The phase of this waveform is charac-                                        40
                                                                            in pure general relativity waveforms,     using the
              terized by phenomenological coefficients {pi }, which include           ativity expressions in terms of masses and spi
                                                                                      themselves. Our testing coefficients are those
Future Localization Prospects

Face-on BNS
@ 80 Mpc

                             2016-17                          2017-18

Face-on BNS
@ 160 Mpc

                             2019+                              2022+

HLV = Hanford-Livingston-Virgo         HILV = Hanford-LIGO India-Livingston-Virgo
                                                                                41
From one generation to the next (II)
Terrestrial detectors                                                    Einstein Telescope (ET)

                                                 Advanced LIGO,
                                                 Advanced Virgo,
                                                 GEO HF, KAGRA

                        Foundations of
                  multi-messenger astronomy            First
                                                     detection
                    Enhanced LIGO, Virgo+

   Initial LIGO, Virgo,
         GEO600

 First generation                             Second generation           Third generation

Data taking                          Towards routine observations,   In-depth observation of
Rates upper limits                   GW astronomy                    the universe with GW
Building the network
                                                                                           42
Table 3 Summary of a plausible observing schedule, expected sensitivities, and source localization with
  the Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the

                                      Plan and sensitivity evolution
  detectors’ commissioning progress. Ranges reflect the uncertainty in the detector noise spectra shown in
  Figure 1. The achieved binary neutron star (BNS) ranges for 2016 – 2017 are characteristic of performance
  to date, not for the complete run. The burst ranges assume standard-candle emission of 10 2 M c2 in
                                                                   1/2
  gravitational waves at 150 Hz and scale as EGW , so it is greater for more energetic sources (such as binary
Prospects for Observing and Localizing GW Transients with               aLIGO, AdV and KAGRA                               5
  black holes). The BNS localization is characterized by the size of the 90% credible region (CR) and the
  searched area. These      are calculated by running the BAYESTAR                            rapid sky-localization code [189] on a
                     Advanced LIGO                                                   Advanced Virgo
  Monte Carlo sample of simulated signals, assuming senisivity curves in the middle of the plausible                                Living Rev. Relativity, 19, (2016), 1
                                                                                                                                            ranges
  (the geometric meansMidof(2016the        upper and lower bounds). The variation
                           Early (2015 – 16, 40 – 80 Mpc)
                                     – 17, 80 – 120 Mpc)
                                                                                                     in the localization reflects both the
                                                                                           Early (2017, 20 – 65 Mpc)
                                                                                           Mid (2018 – 19, 65 – 85 Mpc)
  variation in duty cycleLatebetween
                                (2018 – 19, 120 –70%
                                                  170 Mpc)and 75% as well as Monte Carlo            statistical         uncertainty. The estimated
1/2

                                                                                             1/2
                                                                                           Late (2020 – 21, 65 – 115 Mpc)

  number of BNS detections             uses
                           Design (2020,  190 Mpc) the actual BNS       for 2015 – 2016, and       the 125
                                                                                           Design (2021,   expected
                                                                                                              Mpc)        range otherwise; future
Strain noise amplitude/Hz

                                                                                             Strain noise amplitude/Hz
                            21                                                                                           21
  10                                                            10
                           BNS-optimized (210 Mpc)                                         BNS-optimized (140 Mpc)
  runs assume a 70 – 75% duty cycle for each instrument. The BNS detection numbers also account for
  the uncertainty in the BNS source rate density [73]. Estimated BNS detection numbers and localization
  estimates are computed assuming a signal-to-noise
  10                        22
                                                                10         ratio greater than 12. Burst localizations are expected to
                                                                                                                         22

  be broadly similar to those derived from timing triangulation, but vary depending on the signal bandwidth;
  the median burst searched area (with a false alarm rate of ⇠ 1 yr 1 ) may be a factor of ⇠ 2 – 3 larger than
  the values quoted for BNS signals [202]. No                          burst detection numbers are given, since the source rates
                            23                                                                                           23
  10                                                            10

  are currently unknown. Numbers for 2016 – 2017 include Virgo, and do not take into account that Virgo
  only joined the observations for the latter part the run. The 2024+ scenario includes LIGO-India at design
                            24                                                                                           24
  sensitivity.
  10                                                            10
                                 1         2                                        3                                         1                2             3
     10               10                        10                  10               10                        10
                                          Frequency/Hz                                                                                        Frequency/Hz
                                                                                            KAGRA
                                                                                                             Opening (2018 – 19, 3 – 8 Mpc)
                                           Epoch             2015 – 2016                   2016 – 2017        2018 – 2019
                                                                                                             Early (2019 – 20, 8 – 25 Mpc)
                                                                                                                                                                   2020+        2024+
                                               1/2

                                     Planned run duration       4 months                    9 months           12 months
                                                                                                             Mid (2020 – 21, 25 – 40 Mpc)
                                                                                                                                                                 (per year)   (per year)
                                                          Late (2021 – 22, 40 – 140 Mpc)
                                               Strain noise amplitude/Hz

                                                                           21
                                               LIGO               40 140 – 60                 60 – 75            75 – 90                                            105          105
                               10
                                                          Design (2022,      Mpc)

     Expected burst range/Mpc                  Virgo                    —                     20 – 40            40 – 50                                           40 – 70        80
                                             KAGRA                      —  22
                                                                                                  —                 —                                                —           100
                               10
                                               LIGO               40 – 80                    80 – 120           120 – 170                                           190          190
     Expected BNS range/Mpc                    Virgo                    —                     20 – 65            65 – 85                                          65 – 115       125
                               10
                                             KAGRA                      —  23                     —                 —                                                —           140
                                               LIGO               60 – 80                    60 – 100               —                                                —            —
     Achieved BNS range/Mpc                    Virgo                    —                     25 – 30               —                                                —            —
                               10            KAGRA                      —  24
                                                                                1       2
                                                                                                  —                 —             3
                                                                                                                                                                     —            —
                                  10                10                        10
              Estimated BNS detections              Frequency/Hz 0.002 – 2                  0.007 – 30         0.04 – 100                                        0.1 – 200    0.4 – 400
               Actual BNS detections                                     0                        —                 —                                                —            —
Fig. 1 Regions of aLIGO (top left), AdV (top right)   2 and KAGRA (bottom) target strain sensitivities as a
function of frequency. The%binary
                                              5 deg
                                     neutron star (BNS)
Generic Transient Search
q   Operates without a specific search model
▶   Identifies coincident
    excess power in       time-
    frequency
    representations of h(t)
    ▶   Frequency < 1 kHz
    ▶   Duration < a few seconds
q   Reconstructs signal waveforms consistent with common GW signal in
    both detectors using multi-detector maximum likelihood method
q   Detection statistic         Ec: dimensionless coherent signal energy obtained by
                                    cross-correlating the two reconstructed waveforms
    Ø                               En: dimensionless residual noise energy after
                                    reconstructed signal is subtracted from data
q   Signals divided into 3 search classes based on their time-frequency
    morphology
    Ø   C3 : Events with frequency increasing with time – CBC like                  44
Expected BBH Stochastic Background

▶   GW150914 suggests population of
    BBH with relatively high mass
▶   Stochastic GW background from
    BBH could be higher than
    expected
    ▶   Incoherent superposition of all
        merging binaries in Universe
    ▶   Dominated by inspiral phase
▶   Estimated energy density

▶   Statistical uncertainty due to
    poorly constrained merger rate
    currently dominates model
    uncertainties
▶   Background potentially detectable
    by Advanced LIGO / Advanced
    Virgo at projected final sensitivity      45
Sensitivity
                                           Phys. Rev. Lett. 116, 131103 (2016)

Seismic noise                                                                    S6
Improved
                                                                                 O1
seismic
                                                                                 aLIGO
isolation
                                                                                 design

                                                                   Future
                                                                   upgrade

   Thermal noise                      Quantum noise
   Monolithic suspensions             Higher laser power
   Improved mirror coatings           Thermal compensation
   Larger beam size                   Signal recycling
                                      DC detection        46
Intrinsic Parameters
                                                                                                                        week ending
L 116, 241103 (2016)                  PHYSICAL             REVIEW          LETTERS                                     17 JUNE 2016
                                                                                                                                                      arXiv:1606.04856 [gr-qc]
                                               Inspiral

                    PRL 116, 241103 (2016)                                          Merger + Ringdown

             ▶      Encoded in GW signal :
 . 5. Estimated gravitational-wave strain from GW151226 projected onto the LIGO Livingston detector with times relative to
                     ▶   Inspiral
 ember 26, 2015 at 03:38:53.648  UTC. This shows the full bandwidth, without the filtering used for Fig. 1. Top: The 90% credible
on (as in [57]) for a nonprecessing spin waveform-model reconstruction (gray) and a direct, nonprecessing numerical solution of                                                      8
                           ▶chirp mass, mass ratio, spin components
stein’s equations (red) with parameters consistent with the 90% credible region. Bottom: The gravitational-wave frequency f (left
 ) computed from the numerical-relativity waveform. The cross denotes the location of the maximum of the waveform amplitude,
roximately coincident with the merger of the two black holes. During the inspiral, f can be related to an effective relative velocity                    arXiv:1606.04856 [gr-qc]
                           ▶Additional spin effect
ht axis) given by the post-Newtonian   parameter v=c ¼ ðGMπf=c3 Þ1=3, where M is the total mass.

                                 If not // orbital angular
    VI. ASTROPHYSICAL▶IMPLICATIONS                              momentum:
                                                          evolutionary  history of orbital    plane
                                                                                   the observed   black hole mergers
                                                          are further discussed in [5].
                                 precession
The inferred black hole masses are   within the range of
namically measured masses of black holes found in x-ray
                                                             The first observing period of Advanced LIGO provides
                                                          evidence for a population of stellar-mass binary black holes
                                              liesAmplitude   and phase to a modulation
ck hole, there is a probability of 4% that itâ
 aries [76–80], unlike GW150914. For the secondary
                                                          contributing        stochastic background that could be
                                                   in the
                                                                   higher than previously expected [87]. Additionally, we
 ited 3–5M ⊙ gap between observed neutron star and
                    ▶
ck hole masses [76,77],  Merger and ringdown
                          and there is no support for the
                                                                   find the rate estimate of stellar-mass binary black hole
                                                                   mergers in the local Universe to be consistent with the
mary black hole to have a mass in this range.
                                                                   ranges presented in [88]. An updated discussion of the rate
Binary black hole formationPrimarily governed by final black hole mass and
                         ▶ has been predicted through a
ge of different channels involving either isolated binaries
                                                                   estimates can be found in [5].
                                                                      A comprehensive discussion of inferred source param-
                           spin
dynamical processes in dense stellar systems [81]. At
sent all types of formation channels predict binary black
                                                                   eters, astrophysical implications, mass distributions, rate
                                                                   estimations, and tests of general relativity for the binary
e merger rates and black hole masses consistent with the
                           Masses and spins of binary fully determine mass and
                         ▶ GW150914 [82–84]. Both
 ervational constraints from
                                                                   black hole mergers detected during Advanced LIGO’s first
                                                                   observing period may be found in [5].
ssical isolated binary evolution through the common
                           spin of final black hole in general relativity
 elope phase and dynamical formation are also consistent
                                                                VII. CONCLUSION
                                                                               FIG. 4. Posterior probability densities of the masses, spins and distance to the th
h GW151226, whose formation time and time delay to                                                              two dimensional distributions, the contours show 50% and47
                                                                                                                                                                         90% credible regions.
rger cannot be determined from the merger observation.                LIGO has detected a second gravitational-wave      the convention that msource
                                                                                                                       signal
                                                                                                          events. We use                      1       msource
                                                                                                                                                         2    , which produces the sharp
 en our current understanding of massive-star evolution,           from the coalescence of two stellar-mass black holes with
 measured black hole masses are also consistent with any           lower masses than those measured for GW150914.     the contours follow lines of constant chirp mass (M source = 8.9+00
                                                                                                          LVT151012, Public
Extrinsic Parameters                                                                 arXiv:1606.04856 [gr-qc]

  ▶    Amplitude depends on masses, distance,
       and geometrical factors
       ▶    Distance – inclination degeneracy

                                                                            ▶     Source location on the sky
           FIG. 4. Posterior probability densities of the masses, spins and distance to the three events GW150914, LVT151012 and GW151226. For the
           two dimensional distributions, the contours show 50% and 90% credible regions. Top left: component masses msource           and msource for the three
                  Interf.  B
           events. We use the convention that m1  source  m2source               ▶    inferred       primarily      from       1             2
                                                                   , which produces the sharp cut in the two-dimensional distribution. For GW151226 and
           LVT151012, the contours follow lines of constant chirp mass (M source =▶8.9time   0.3 M of
                                                                                           +0.3
                                                                                                     andflight
                                                                                                          M source = 15.1+1.4
                                                                                                                           1.1 M for respectively).
                                                                                                                                         GW150914   In all three
           cases, both masses are consistent with being black holes. Top right: The mass and dimensionless spin magnitude of the final black holes.
           Bottom left: The effective spin and mass ratios of the binary components. ▶    amplitude
                                                                                       Bottom                and phase
                                                                                                right: The luminosity distanceconsistency
                                                                                                                                 to the three events.

                                                                        ▶              Limited accuracy with two detector
          a greater impact upon the inspiral. We find that smaller spins                  Observations for all three events are consistent with small
Interf. A are favoured, and place 90% credible bounds on the primary                   network
                                                                                       values of the effective spin: |ceff |  0.17, 0.28 and 0.35 at
          spin a1  0.7 for GW150914, a1  0.7 for LVT151012, and▶                     90% probability
                                                                                       2-D  90%         for GW150914,
                                                                                                    credible     region   LVT151012
                                                                                                                            230 deg2and GW151226
          a1  0.8 for GW151226. In the case of GW151226, we infer                     respectively. This indicates that large parallel spins aligned or
          that at least one of the components has a spin of 0.2 at the                 (GW150914)
                                                                                        antialigned with the orbital angular momentum are disfavored.
          99% credible level.                                           ▶              3-DIt may
                                                                                             uncertainty
                                                                                                  be possiblevolume    contains
                                                                                                              to place tighter constraints on each com-
              While the individual component spins are poorly con-                      ponent’s
                                                                                       ~10       spinWay
                                                                                            5 Milky   by using  waveforms
                                                                                                            equivalent      that include the full effects
                                                                                                                          galaxies         48
                                    PRL 116, 241102
           strained, there are combinations      that(2016)
                                                       can be better inferred.          of precession [39]. This will be investigated in future analy-
           The effective spin ceff , as defined in Equation 6, is a mass-               ses.
Testing GR
▶   Most relativistic binary pulsar known today
    ▶ J0737-3039, orbital velocity
▶   GW150914
    ▶ Strong field, non linear, high velocity regime

▶   “Loud” SNR -> coarse tests
    ▶ Waveform internal consistency check
    ▶ No evidence for deviation from General Relativity in waveform
    ▶ Bound on Compton wavelength (graviton mass)
      ▶   No evidence for dispersion in signal propagation

▶   More contraining than bounds from the solar system
▶   Less constraining than model dependent bounds from large scale
    dynamics of galactic clusters
                                                                  49
Rate of BBH mergers
                                                                                                      0.6

                                                                                                                                                                   arXiv:1606.04856 [gr-qc]
                                                                                                                         Event Based                      total
                                                                                                                         GW150914
    Astrophysical rate inference
                                                                                                      0.5
▶                                                                                                                        LVT151012

    ▶   Counting signals in experiment                                                                0.4
                                                                                                                         GW151226

        Estimating sensitivity to population of sources

                                                                                             R p(R)
    ▶                                                                                                 0.3

        ▶ Depends on mass distribution
                                 (hardly known)                                                       0.2                                                                                              FIG. 11. The posteri
                                                                                                                                                                                                       ferred masses for our
                                                                                                                                                                                                       LVT151012, and GW
                                                                                                      0.1                                                                                              a = 2.35 that correspo
                                                                                                                                                                                                       infer the rate of BBH
                                                                                                                                                                                                       the posterior, which a
                                                                                                      0.0
                                                                                                                                                                                                       median and 90% cred

    Low statistics and variety of assumptions                                                               10   1        100            101              102
▶                                                                                                                               R (Gpc   3
                                                                                                                                             yr   1
                                                                                                                                                      )
       -> broad rate range                                                                                                                                                                             more, due to the ob
                                                                                                                                                                                                       cant signal GW151
    ▶ R ~ 9 – 240 Gpc-3 yr-1
                                                                      FIG. 9. The posterior density on the rate of GW150914-like BBH,                                                                  In particular, the 90

                                                                                                                                                                                arXiv:1606.04856 [gr-qc]
                                                                 Probability of N>10, N>35 and N>70
                                                                      LVT151012-like BBH, and GW151226-like BBH mergers. The                                                                           to 9–240 Gpc 3 yr
                                                                      event based rate is the sum of these. The median and 90% credi-
    ▶   Previsously : R ~ 0.1 – 300 Gpc-3 yr-1                        ble levels are given in Table II.
                                                                                                                                                  N>35
                                                                                                                                                                                                       flat in log mass popu
                                                                                                                                                                                                       law population distr
        (electromagnetic observations and population modeling)                                                                                                                                            With three signifi
                                                                                                                                                                                                       and GW151226, all
                                                                                                                          N>10                                                                         ity, we can begin t
                                                                                                                                                                                                       lescing BBHs. Her
                                                                                                                                                                                                       the mass distributio
                                                                                                                                                                                                       method that can fit
▶   Project expected number of highly significant events                                                                                                                                               sented in future wo
                                                                                                                                                                                                       fully in Appendix D
    as a function of surveyed time x volume                                                                                                                     N>70                                      We assume that t
                                                                                                                                                                                                       alescing binaries fo

                                                                                                                                                                                                       with Mmin  m2  m
                                                                                                                                                                                                       distribution on the s
                                                                                                                     V x T relative to V x T of O1                 50                                  m1 . With a = 2.35
                                                                                                                                                                                                       distribution used in
                                                                                                                                                                                                       is driven by a desi
Astrophysics implications

▶   Relatively massive black holes (> 25 M) exist in nature

    ▶   Massive progenitor stars
        => low mass loss during its life
        => weak stellar wind
    ▶   Metallicity = proportion of elements heavier than He
        ▶   High metallicity => strong stellar wind
    ▶   => formation of progenitors
                     in a low metallicity environment
                                                               51
Astrophysics implications
▶   Binary black holes form in nature
    ▶ Formation :
       ▶ Isolated binaries
       ▶ Dynamical capture (dense stellar regions)
    ▶ Detected events do not allow to identify formation channel
       ▶ Future : information on the spins can help

▶   Binary Black Holes merge within age of Universe at detectable rate
    ▶   Inferred rate consistent with higher end of rate predictions
        (> 1 Gpc-3 yr-1)
                                                                         52
53
54
Vous pouvez aussi lire