Des matériaux renouvelables pour faire les courses - Serpbio
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
1 Des matériaux renouvelables pour faire les courses Des sacs en matière plastique biodégradable Ecovio dans les supermarchés allemands Aldi BASF 14/05/15 Parallèlement à d’autres types de sac, les supermarchés allemands Aldi Süd offrent maintenant à leurs clients des sacs de caisse en Ecovio®, un plastique biodégradable de BASF. Ceux-ci sont fabriqués par le groupe Victor Güthoff & Partners, dans son usine de Neuruppin/Brandenburg, en Allemagne. Aldi Süd, la grande chaîne allemande de supermarchés à prix cassés, propose désormais dans ses magasins allemands des sacs de caisse en matière plastique biodégradable Ecovio ® de BASF. Ceux-ci sont fabriqués pour le compte d’Aldi par le Groupe Güthoff & Partner dont le siège est basé à Kerpen, en Allemagne. La matière plastique Ecovio est constitué d’Ecoflex® et d’acide polylactique, une matière première renouvelable tirée du maïs. Chimiquement parlant, Ecoflex est un polyester d’origine pétrochimique. Malgré cela, grâce à sa structure moléculaire spéciale, il peut être digéré par des microbes dans des conditions précisément définies ; à ce titre, il est complètement biodégradable aux termes de la norme européenne EN 13432. Pour sa part, Ecoflex rend le sac flexible, résistant à la déchirure, étanche à l’eau et imprimable – autant de propriétés d’une matière plastique classique –, tandis que l’acide polylactique rigide fournit la matière première renouvelable. La combinaison d’Ecovio et d’Ecoflex permet aux fabricants de films tels que Victor de produire des sacs plastiques et d’autres produits à base de film en modulant sur mesure leurs propriétés : un pourcentage supérieur d'Ecoflex augmente la souplesse du film, tandis qu'un pourcentage supérieur d'Ecovio augmente sa rigidité. Ainsi, Ecoflex permet désormais l’emploi de matières premières renouvelables comme l’acide polylactique dans des produits de grande consommation très performants. Les sacs de caisse biodégradables procurent aux clients un avantage supplémentaire : ils sont non seulement suffisamment solides pour être réutilisés plusieurs fois comme cabas mais, une fois usés, ils peuvent aussi faire office de sac poubelle pour la collecte et l’élimination des déchets organiques de cuisine – ce qu'autorisent déjà la plupart des municipalités allemandes. “Les deux matières plastiques Ecoflex et Ecovio ont d’abord été conçus pour des produits tels que les sacs de caisse et les sacs à déchets organiques, qui seront ensuite valorisés en compost – avec les déchets végétaux – dans une usine de compostage”, explique Andreas Künkel, chargé du développement des matières plastiques biodégradables chez BASF. Dans ces applications, la biodégradabilité des matériaux constitue un avantage pour les clients comme pour l'environnement.
2 Coca-Cola retrempe-t-il dans le greenwashing ? TerraEco du 05/06/15 (Crédit photo: Coca-Cola) Une bouteille 100 % végétale, un concours design durable… après la sortie de sa gamme verte, le leader mondial des sodas multiplie les initiatives pour soigner sa réputation. A tort ou à raison ? Après avoir glissé de la stévia, cette plante aux propriétés sucrantes, dans ses canettes pour faire virer au vert ses étiquettes, Coca-Cola s’attaque au contenant. Présentée à l’Exposition universelle de Milan, la bouteille de Coca- Cola 100 % végétale, dont le plastique est intégralement produit à partir de canne à sucre et de déchets de l’industrie sucrière, est prête pour inonder le marché américain. Dans la course à la « Bouteille plante » ou « bouteille à base de plante », le leader avait un cran de retard sur Pepsi qui avait déjà présenté dès 2011 sa bouteille 100% végétale – mais pas recyclable avec les PET, (Polytéréphtalate d’éthylène), les matières utilisées, entre autres, pour les bouteilles plastiques. La raison d’être de ces inventions : réduire le recours aux ressources fossiles et afficher des baisses d’émissions de gaz à effet de serre. Pourtant, en France, où les « PlantBottles » de Coca contiennent déjà 30 % de fibres végétales, les ONG redoutent l’arrivée de cette grande sœur modèle. « On craint une concurrence sur l’usage des terres. Si ces produits sont indexés sur pétrole – qui sert à fabriquer le plastique – plutôt que sur les cours des produits alimentaires, on craint que les exploitants choisissent comme débouché le plastique plutôt que l’alimentation », explique Camille Lecomte aux Amis de la Terre. « Sans compter que le type d’agriculture dont sont issus les produits de base est très gourmand en terre et en eau et peut justifier le recours à des plants OGM puisque les récoltes ne sont pas destinées à l’alimentation. » L’autre problème concerne la deuxième vie de ces bouteilles. « La majorité du plastique d’origine végétale n’a pas les mêmes propriétés que le PET , si toutes les entreprises s’y mettent, ça risque de poser des problèmes de recyclabilité », poursuit Camille Lecomte. « Les systèmes de recyclage actuels n’ont pas été mis en place pour des plastiques qui n’imitent pas les plastiques actuels », confirme un article de Slate US. Dès la sortie de sa bouteille vedette, Coca-Cola a coupé court à ces critiques « L’emballage ressemble, fonctionne et se recycle comme du PET traditionnel », assurait la compagnie lors de la présentation Milan. Ce qui ne résout pas tous les problèmes. « Ils utilisent simplement des plantes pour produire les mêmes polymères que l’on trouve dans d’autres plastiques. Ce qui a zéro effets sur la pollution », estime Marcus Eriksen, fondateur de l’ONG 5 Gyres, spécialiste de la plastification des océans. Sur un autre front du verdissement, Coca-Cola France organise en ce moment le concours du Design durable, un événement qui se tiendra le 23 juin au siège de l’entreprise avec pour maîtres-mots de cette sixième édition sont « recyclage » et « valorisation des emballages ». « Si les industriels de la boisson s’intéressent tant à leurs bouteilles c’est parce qu’ils savent que l’emballage est le principal impact de la production », décrypte Camille Lecomte aux Amis de la Terre. Rien de tel qu’une action étiquetée « durable » pour faire taire les soupçons. Dans les rangs du jury, on trouve pourtant l’Ademe (l’agence de l’environnement et de la maîtrise de l’énergie). Une présence qu’assume complètement Nadia Boeglin, conseillère à la présidence de l’agence qui passera en revue les dix projets sélectionnés : « Une de nos missions c’est de faire progresser l’environnement dans des territoires où il est moins naturel, chez les grandes marques de consommations courante, les leaders de la distributeurs… En parallèle au soutien à de très bons projets pilotes, il faut faire progresser le gros de la troupe ». Pour elle, Coca-Cola est plutôt en bonne voie. Interrogé le groupe renvoie à ses engagements en vues de la COP21 : amélioration de l’efficacité énergétique de ses usines, investissement de millions d’euros dans la filière du recyclage, réduction du poids des emballages, signature de la charte Fret21 pour l’optimisation du transport, la compagnie est sur tous les fronts… « Du moment que ça ne nuit pas à son chiffre d’affaire », nuance Nadia Boeglin. En s’associant au projet, l’Ademe ne donne-t-elle pas au groupe de trouver une caution vert à peu de frais ? Nadia Boeglin s’en défend : « évidemment c’est plus simple pour nous de travailler avec Naturalia, mais on fera beaucoup moins notre boulot. »
3 Improving Performance and Versatility of PLA with PHA Additives Posted on May 22, 2014 by Editor Metabolix has developed new proprietary polyhydroxalkanoate (PHA) copolymer technology that extends the range of MirelTM PHAs, allowing us to serve exciting new opportunities. Metabolix strategy focuses on demonstrating the performance and value that Mirel PHA polymers can bring to target applications. This performance is often characterized by the physical properties of the polymer such as crystallinity and rheology, and by the property enhancements that the PHA can bring to other materials. These recent PHA polymer innovations bring distinct performance advantages into the Metabolix product portfolio by including fully amorphous materials with the more widely known semi-crystalline grades and they open up interesting new growth opportunities for Metabolix in enhancing other bioplastic materials. PLA/PHA film covers the top logo, demonstrating the excellent transparency of modified film Metabolix has demonstrated significant value in using PHA polymers to enhance the performance of polylactic acid, commonly known as PLA, and perhaps the most widely used bioplastic in the world today. Projections suggest PLA demand growth as high as 20% per year into a broad range of applications from food to packaging, and more recently into 3D printing and automotive uses. PLA is a brittle polymer and often modified to improve its ductility. Plasticizers are one mode of improving PLA ductility, but can have the drawbacks of reducing toughness, lowering the glass transition temperature (Tg) resulting in lower heat resistance and narrowing the processing window. At Metabolix, we have demonstrated the effectiveness of using amorphous PHA copolymers to “rubber toughen” PLA bringing both ductility and toughness. Not being a miscible plasticizer, PHA modifiers will not significantly lower the Tg of the PLA nor compromise the processing window. What else makes the Metabolix rubber modifier unique? Used at normal usage levels like other effective rubber modifiers for PLA, Metabolix PHA modifiers are distinct in that they will not compromise the high biocontent or compostability of PLA. Inherent compatibility with PLA also means blending is relatively straightforward and clarity can be maintained without the need to tune refractive indices. We have seen very promising results thus far in 2014 as we prototype PHA modifiers for the PLA market across a range of PLA applications and converting technologies. In PLA fibers, PHA modifiers added at levels at or below 5% have demonstrated a remarkable ability to improve the “hand,” a complex measure of softness, pliability and feel, by as much as 60%. This effect is a combination of ductility enhancement and elongation leading to thinner filaments and reduced shrinkage. By dramatically improving the softness characteristics of PLA nonwovens, expanded potential is possible in personal hygiene, home care and medical applications where skin contact requires a gentle touch and feel. In these single use applications, the renewability of PLA measured in high biocontent (and potential for compostability) is important and uncompromised by PHA modifiers. By incorporating PHA additives into PLA fiber formulations, we are able to improve softness, ductility, and feel.
4 In PLA sheet, PHA modifiers have demonstrated the ability to eliminate the brittle edge trimming issues improving safety and reducing scrap. The combination of ductility enhancement and elongation leads to the potential for a significant improvement in impact strength. Similar benefits are now realized in injection molded single-use items. In blown film, improved flexibility and toughness approaching HDPE has become a reality with PLA-based films. These new developments in rubber toughening PLA with Metabolix PHA technology will be a focal point of my presentation in Munich at the 3rd PLA World Congress. By extending the range of our PHA technology to develop new differentiated products, and focusing on the natural advantages of these PHA materials – compatibility, renewability, and biodegradability – we have built a foundation for new growth in PHA bioplastics and brought value to PLA through improved performance and expanded opportunities. A Dutch initiative investigates how waste can be used to produce biochemicals 8 June 2015 Il Bioeconomista Copyright AkzoNobel A major Dutch initiative designed to investigate how waste can be used as a raw material to produce chemicals has more than doubled in size since being launched late last year. Initially formed by AkzoNobel, Enerkem and four regional partners, the collaboration has since attracted eight more commercial parties. The aim is to use Enerkem’s technology to manufacture synthesis gas from domestic and other waste and use it as a feedstock for making products such as methanol and ammonia. The public-private partnership will study the options for setting up Europe’s first plant, either in Rotterdam or Delfzijl. The partners will publish the results of the study later this year. “We welcome all the new partners in our quest to use waste as a raw material for chemicals,” said Peter Nieuwenhuizen, research director of AkzoNobel Specialty Chemicals. “Both the size and diversity of this partnership are unique in the Netherlands. Together, we form a strong group of companies whose capabilities combine to provide all we’ll need to convert this promising technology into practical reality.” The latest commercial organizations to join the partnership are Van Gansewinkel (founder of the Circularity Center), EEW Energy from Waste, BioMCN, Air Liquide, Veolia, Visser & Smit Hanab, the Port of Rotterdam Authority and DNV GL. They join founding partners AkzoNobel, Enerkem, the Investment and Development Company for the Northern Netherlands (NOM), Groningen Seaports, Clean Tech Delta and the South Holland development company InnovationQuarter.
5 Together, the 14 partners have all the expertise needed to make the initiative a success, from waste collection to conversion to industrial plants and sales. The primary aim is to use Enerkem’s proven conversion process to turn domestic and other waste into useful products. “Waste is an abundant resource and is a problem in many regions throughout the world. Waste is also a low cost unconventional feedstock that can be used to produce chemicals,” adds Vincent Chornet, Enerkem’s CEO. “The advantage of Enerkem’s process is that it is fully compatible with the existing waste infrastructure”. He added that making syngas and methanol from waste can deliver a sustainable cost-effective source of raw material for the chemical industry. A Convergence of Innovation and Regulation Catalyzes the Development of PHA Biopolymers for use in Personal Care Products Posted on March 3, 2015 by Lynne Brum We recently entered into a global, exclusive commercial and technology alliance with Honeywell to offer new marine-degradable biopolymers for use in cosmetics and personal care products. Through the alliance, Mirel® PHA biopolymers will be developed as part of Honeywell’s Asensa® line of personal care additives. This technology is intended to address regulatory and other requirements emerging in the U.S. and around the world for personal care microbead biodegradation. Traditional plastic microbeads, included in products such as cosmetics, skin care preparations, cleansers, and lotions are typically made from synthetic plastics such as polyethylene. They are generally washed down the drain after use and can accumulate in lakes, rivers, and oceans, endangering marine life. Using applicable ASTM test methods, we have shown that the biodegradability of our Mirel PHA biopolymers is similar to that of cellulose and paper, and furthermore, is faster than other commercially available biodegradable polymers. We believe the development of strict industry standards defining how fast microbeads must biodegrade, together with proper test methodologies for measuring results, would be helpful benchmarks for regulation focused on biodegradable alternatives to traditional microbeads. Together, Metabolix and Honeywell plan to take a leadership role in this area. We intend to educate and advocate for the adoption of strict standards of environmental biodegradability to ensure that consumers can continue to enjoy the functional benefits afforded to cosmetics and personal care products by microbeads, without adding to the accumulation of synthetic plastics in the environment. We believe this convergence of innovation and regulation positions us to bring better exfoliating products to consumers that deliver the required performance while being gentle on the environment. Over the last several months, we have gained important insights into the expectations and needs of the personal care market. Together with Honeywell, we look forward to working with industry players to deliver innovative new solutions based on biodegradable PHA biopolymers for cosmetics and personal care products. Turning our mountains of food waste into graphene Scientists are trialling out new techniques for converting food waste into graphene and hydrogen
6 Scientists at the City University of Hong Kong can turn coffee grounds and stale bakery goods into a sugary solution that can be applied to manufacture plastic. Photograph: Alamy Rich McEachran Monday 16 February 2015 Blended cocoa beans, rice, fruit skins, leeks and asparagus sounds like it should be a recipe for a disastrous smoothie. But these are just some of the wasted foodstuffs that are being treated and converted into materials, with environmental benefits. Scientists at the City University of Hong Kong have found that they can turn coffee grounds and stale bakery goods – collected from a local Starbucks – into a sugary solution that can be used to manufacture plastic. The food waste was mixed with bacteria and fermented to produce succinic acid, a substance usually made from petrochemicals, that can be found in a range of fibres, fabrics and plastics. Six ways graphene could make the world a greener place Meanwhile, engineers at the Colorado School of Mines have discovered a way to turn banana peels, eggshells and rice husks into glass. By blending, drying and pounding it into a fine powder, and with a little help from the magic of science, they found the mixture could provide some of the metal oxides required in the composition of glass. Ivan Cornejo, a professor at the university, told the Denver Post at the time that such an innovation could reduce the need to mine for silica, one of glass’s primary components. Indestructible smartphones, weather-resistant solar panels and Harry Potter-style newspapers may be on the way – if producers can solve a few challenges Graphene technology could mean that Harry Potter-style newspapers with video images are within our grasp. Photograph: Jaap Buitendijk Peter MooreWednesday 28 January 2015 Graphene, the “wonder material”, continues to capture the imagination. A honeycomb of carbon atoms so thin it is considered two-dimensional, graphene is stronger than diamond, more electrically conductive than copper and more bendable than rubber. In the decade since its discovery at the University of Manchester, tens of millions of pounds have been ploughed into researching the material. But efforts to put it to widespread use have been hampered by the expense of producing it at scale and its weaknesses, such as radial cracking. Graphene - the new wonder material Yet recently there have been signs that the graphene revolution is entering a new phase. Various scientists, including Shou-En Zhu and Catharina Paukner, are claiming to have discovered methods to bulk manufacture the material. Others are formulating hybrid graphene spin-offs – new substances with special properties of their own. This would not only make graphene more efficient, it could also make it more durable. And if commercially viable and better adapted, graphene has the potential to reshape the world we live in. Here are six ways
7 graphene could extend the longevity of products. 1. Flexible smart cards In the UK, about 58m million credit and other bank cards were in circulation in February last year. Add the miscellaneous others which congregate in the average wallet and you’ll have an idea of the amount of plastic used annually. A graphene smart card could change all this, as shown by the Spanish company Graphenano. Imagine a single touch-activated card that held all your personal information – credit cards, boarding passes, train tickets, Oyster cards – in one. With everything updated from a computer, a smart card could eradicate enormous amounts of plastic waste. 2. Updatable foldable newspaper Last September, the Cambridge Graphene Centre demonstrated the first graphene-based flexible display. It could be bent this way and that, while continuing to show digital content. It was a little moment of great significance. A bendable screen could be used in any number of ways. Like the moving images in the Daily Prophet newspaper featured in Harry Potter , real newspapers could develop foldable graphene templates that are updated wirelessly each day, cutting paper waste dramatically. Updatable foldable Ordnance Survey maps could do the same. 3. Electric car batteries Batteries have long been the Achilles heel of electric cars. Poor charge capacity means that people are less likely to rely on them, and with the lifespan of the battery linked to the lifespan of the vehicle, electric cars often become obsolete and need replacing. At last, there are plans to introduce a new polymeric graphene battery in 2015. Especially suited to electric cars, this battery is said to have a lifetime four-times longer than conventional hybrid ones and allows vehicles to run as much as 1,000km on a 10-minute charge. Without the need to be replaced, the graphene battery may signal a new era for the electric car. 4. Indestructible smart phones In America the average lifespan of a smartphone is just two years. Some models fall out of fashion, others are lost, smashed or drowned in water. According to extended warranty service provider SquareTrade, as many as one third of smartphone users damage their handset in the first year of ownership. For a prevalent product, this signifies enormous waste, yet graphene’s tough properties could change this. A recent experiment published in the journal Science suggested graphene was twice as bullet-proof as Kevlar – the standard material for ballistic armour. Imagine if such a strong material was integrated into smartphone design, replacing the glass or plastic components? 5. Paint Not so eye-catching, but equally useful is graphene’s use as a paint. Its tough exterior is useful to withstand the wind and rain in outdoor structures, but it also has useful lubricating properties that mean it works in other situations. Applied Graphene Materials in the USA are developing graphene paints that can be used on a ship’s hulls, halting the spread of underwater corrosion and stopping barnacles from adhering to metal. Graphene's mundane uses deserve greater fanfare, says firm at forefront A similar enterprise is underway in Spain, where Grapheano have mixed together graphene powder and ground limestone to make a paint that they call Graphenstone. In a publicity move they proposed to paint the Valencia opera house that had been damaged by wind erosion just eight years after its completion. 6. Solar panels Standard solar panels have a lifespan of about 40 years, but become less efficient with time and often have to be replaced. One of the main challenges is exposure to all types of weather. Scientists at the University of Exeter claim that solar panels could be made much more weather resistant if the indium tin oxide (ITO) currently used was replaced with GraphExeter. Formulated at The Centre for Graphene Science at the University of Exeter, GraphExeter comprises several layers of graphene sheets mixed with a separate layer of ferric chloride molecules. According to a recent press release, GraphExeter is much tougher than ITO and improves on the properties of traditional graphene, able to withstand humidity of 100% and temperatures of up to 150C, all of which promises less waste and huge improvements for the solar panel industry.
8 Food into graphene Now, a new EU project, PlasCarb, is researching a way to fashion food waste into graphene. It’s perfectly timed, given the recent buzz surrounding the material and its potential to revolutionise the green industry. The material, discovered in 2004, is so super, Bill Gates is even investing in it to develop an ultra safe condom. The project uses a process known as anaerobic digestion (AD), where waste is converted into biogas. Finding a new lease of life for food waste using AD isn’t anything out of the ordinary. Businesses have been using the process to make energy for some time. Most notably, early last year, Harvest Power, a Brooklyn-based waste treatment plant, built a digester to deal with waste coming from Disney World. More recently, Sainsbury’s partnered with recycling specialists Biffa to launch their first shop powered by food waste collected from the chain’s stores. But PlasCarb takes the process one ambitious step further. “Together with an innovative low-energy plasma reactor we convert the biogas from AD, which is mainly methane and carbon dioxide, to graphitic carbon [from which comes graphene] and renewable hydrogen,” explains project manager Neville Slack, from the Centre for Process Innovation. Beyond the science and technicalities of the process, PlasCarb offers a possible dual advantage over how traditional materials and gases are produced: a happier environment and a commercial use for food waste from a range of industries including retail and hospitality. “The obvious benefit is taking waste destined for landfills and transforming it into raw materials in a sustainable way,” adds Slack. “Graphene is the latest wonder material. Hydrogen has also been identified as a future transport fuel for a low carbon economy.” Food mountains According to the PlasCarb, 95% of hydrogen currently comes from fossil fuels. And some bioplastics produced from crops such as corn are beginning to be deemed unsustainable. The belief is that there won’t be an endless supply of crops, but whether we like it or not, there will probably always be a high volume of discarded food. Growing materials from waste streams could also reduce concerns over how corn-based biopolymers may impact on crop prices, land availability and food shortages. Graphene and hydrogen from surplus food are desirable alternatives, but despite the exciting prospects they offer, Slack and his team aren’t getting ahead of themselves. There is still a question of scalability and how both small and large businesses could access the technology to deal with their waste. He says the project is still in its infancy – it’s in its second year of its three-year duration – and that the economics of it all need to be ascertained. A pilot trial lasting at least a month will see 150 tonnes of food transformed into 25,000 cubic metres of biogas and then on into the graphitic carbon and renewable hydrogen. The results of this will give the team some indication about future market interest and uptake. There’s no doubt that, if scaled up successfully, PlasCarb could play a key role in helping prolong food’s life cycle. But Slack suggests that it doesn’t take away from the fact that, in an ideal world, there wouldn’t be any waste at all. Even though the EU has steps in place to improve the situation (including a target to reduce waste by about 30%), estimates indicate that more than 100m tonnes of food is thrown away annually across the union, and this could rise to 126m by 2020 if not enough action is taken. Bioplastics Industry Discuss Benefits, Barriers, and Prospects of the European Bioeconomy 11/06/2015 On Monday, 8 June 2015, European Bioplastics (EUBP) and the Austrian Energy Agency (AEA) hosted a seminal meeting in Vienna with over 75 thought leaders and senior experts involved in the important process of advancing the bioeconomy in Europe. The participants
9 discussed the initiatives currently being advanced in Austria, the Netherlands, and on the EU level. Special focus was given to the immense potential of the budding bioplastics industry with companies showcasing their innovative bioplastic applications and their vision for a growing resource efficient bioeconomy in Europe. The seminar was generously sponsored by the Embassy of the Kingdom of The Netherlands in Austria. In his opening statement, Peter Traupmann, CEO of the AEA, highlighted the importance of bioeconomy: “Austria is committed to fighting climate change and to contributing to the transition from a fossil-based economy to an economy based on renewable resources. On behalf of the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, we are responsible for the management of the climate protection initiative ‘klimaaktiv’. Within the klimaaktiv programme 'nawaro markt', climate-friendly technologies and the use of renewable resources are supported. The corresponding ‘Action Plan for the Material Use of Renewable Resources’ clearly reflects the growing importance and potential of the bioeconomy and the bioplastics industry in particular.” At the start of the morning session, focussing on legislative developments in Europe and on policy initiatives in Austria and the Netherlands in particular, Karin Weustink, Deputy Director Biobased Economy at the Ministry of Economic Affairs, Agriculture and Innovation of the Netherlands, presented the efforts of the Dutch Government in creating a favourable regulatory framework for the biobased economy. The ‘Green Deal’ sustainability certificates, for example, were pointed out as a successful instrument to promote the use of renewable feedstock, e.g. in the production of polymers. Weustink also sent a clear signal to other legislators from across the EU: “Europe needs to do more in order to stimulate and strengthen the bioeconomy and to stay competitive in the future. We need the right legal framework that creates a level playing field for biobased chemicals and products in order to attract and promote investments in biobased research and production in Europe”. Gerhard Mannsberger, Head of DG Forestry at the Austrian Ministry of Agriculture, Forestry, Environment and Water Management, also stressed the need for a harmonised EU policy to secure the supply of sustainably sourced renewable feedstock. “A responsible use of our natural resources is one of the key pillars of the Austrian bioeconomy. Our agriculture and forestry sector provides sustainably sourced renewable resources for premium biobased applications and in doing so helps to strengthen the economic development of rural areas all over Austria.” During a panel discussion on the benefits, barriers, and prospects of the European bioeconomy, panellists and participants emphasised the tremendous innovation potential of the bioeconomy and the bioplastics industry being evident in numerous research projects, small-scale production plants, and innovative products and applications. Yet, for these projects to unfold their full potential and to enable a full-scale market penetration, the participants demanded a more favourable legal framework and corresponding policy measures promoting a level playing field for the biobased industries, equal access to renewable resources, as well as commonly agreed terminology and standards. Following the debates on policy initiatives and regulatory frameworks, the afternoon sessions focussed on bioplastics products and materials that are available on the market. Furthermore, technical properties, environmental advantages, and new design trends were discussed. Summarising a successful seminar and networking day in Vienna, Hasso von Pogrell, Managing Director of European Bioplastics, urged EU as well as Member State policy makers: “Making our economies fit for the future requires us to collectively reduce our impact on the environment. Using renewable resources efficiently in use cascades or extending product life cycles through better recycling needs to become a reality soon. We have to make sure that we can harvest the fruits that have been cultivated through years of research – we
10 need a clear framework to be able to successfully bring our bioeconomy products to the market.” La Volvo Ocean Race fait étape à ComposiTIC ! le 27 juin 2015 La Volvo Ocean Race, qui se tient à Lorient du 9 au 16 juin, sera l’occasion pour le LIMATB et le plateau ComposiTIC de présenter leur savoir-faire appliqué au nautisme à un public international, dans le cadre notamment de l’événement local du Sailing Valley Tour. Pendant une semaine, du mardi 9 juin au mardi 16 juin, Lorient accueille la dernière étape de la Volvo Ocean Race, avant l’arrivée à Göteborg en Suède fin juin. Cette course en équipe et à la voile, sur des monocoques, amène les participants à faire le tour du monde au cours des 9 étapes qui jalonnent le parcours. Parcourant 3 océans, la course dure plus de 8 mois. L’Université de Bretagne Sud, très engagée dans l’accueil de cette étape, tient un stand mutualisé avec ses partenaires dans le village de la Volvo Race, l’occasion de montrer les dernières innovations de la recherche en matière de nautisme, particulièrement avec l’impression 3D et un système de réalité augmentée facilitant la navigation. Dans ce cadre, une conférence bilingue français et anglais est tenue sur le thème « Des bateaux volants pour la course au large en solitaire : R&D et innovations dans la Sailing Valley Bretonne », durant laquelle une quinzaine d’intervenants viennent s’exprimer. Un enseignant-chercheur du LIMATB, Christophe Baley, vient notamment y présenter ses travaux sur les matériaux composites.
11 Par ailleurs, l’UBS participe au Sailing Valley Tour, qui a lieu à Lorient le 10 et le 15 juin, mais passe aussi à Vannes, Hennebont et Saint Pierre de Quiberon par exemple. La « Sailing Valley », appellation tout droit venue des Etats-Unis, désigne la région qui s’étend de Brest à Vannes et qui regroupe l’essentiel des ressources technologiques, du potentiel de recherche et des infrastructures dédiées au nautisme. Ces deux jours à Lorient permettent de montrer l’excellence du savoir-faire français en matière de nautisme. De plus, toujours dans le cadre du « Sailing Valley Tour », le lundi 15 juin, une visite du plateau ComposiTIC est organisée par Yves Grohens, responsable scientifique de ce plateau, et Christophe Baley, en présence de professionnels du nautisme, de sponsors et des équipages. C’est donc l’occasion de présenter nos travaux à un public international. Lillebonne : le sucrier Tereos va se lancer localement dans la fabrication d’un bioplastique, aux côtés d’un partenaire néerlandais Publié le 14/06/2015 (merci Blandine de Breizpack) Tereos a, pour l’heure, simplement confirmé les premières informations de la presse économique L’unité lillebonnaise de Tereos est sur le point d’accompagner un projet de tout premier ordre dans le secteur de l’emballage écologique. Une opportunité et une diversification qui viennent offrir une bouffée d’oxygène, en marge d’une crise sucrière quasiment sans précédent. Explications. Il faut remonter à une quinzaine d’années pour trouver chez le néerlandais Avantium, leader en termes de recherche sur le marché de la chimie renouvelable, les bases d’une étude sur la transformation de la biomasse en plastique. Or, les avancées en matière de recherche et développement ont, depuis, permis d’envisager le remplacement de l’emballage alimentaire tiré des dérivés du pétrole par un produit issu à 100 % de matières d’origine végétale. Et les études porteraient aussi sur les films en plastique, voire même les fibres, comme les moquettes et les tapis. Avec, à la clé, outre des marchés colossaux, un intérêt environnemental évident en termes de recyclage.
12 UNE OPPORTUNITÉ Or, comme l’a récemment révélé le journal Les Échos sur son site Internet (information reprise le 3 juin sur paris-normandie.fr), Teros a, tout récemment, engagé un accord partenarial exclusif avec la société néerlandaise, en vue de lui fournir la matière première nécessaire. D’où le projet d’une unité de production adaptée sur le site de Lillebonne. Laquelle devrait prendre ses aises au sein même de l’usine de biocarburants. En effet, on sait que Tereos Benp a dû réduire la voilure concernant cet autre volet de sa production haut- normande après que l’Union européenne a abaissé, de 10 à 7 %, le taux d’incorporation de biocarburants dans l’essence. Si le marché qui se présente autour de l’emballage 100 % bio représente, selon les spécialistes, un chiffre d’affaires d’environ 90 milliards d’euros, il est aussi pour Tereos le moyen de faire face à une nouvelle crise sucrière. Non seulement, comme le revèle Le Monde sur son site Internet, le prix du sucre subit un effondrement. Ce qui aurait déjà provoqué des résultats en berne de 8 % pour la société coopérative, alors que le groupe piétine dans des tentatives de rapprochement avec son grand rival français, Cristal Union. Simplement confirmé par le service communication de Tereos, mais sans autre forme de communication, le choix d’un partenariat exclusif avec Tereos fait par Avantium ouvre donc la porte à une diversification, tout en balayant la mauvaise histoire de la politique du bioéthanol. Parmi les perspectives de développement, on imagine encore mal les volumes qui pourraient sortir de la nouvelle usine lillebonnaise. Mais entre les seuls bouteilles et emballages de multiples groupes ou marques comme Coca-Cola, Danone ou Unilever, qui verraient un intérêt à communiquer sur des contenants 100 % biologiques, la brèche est énorme, même si la concurrence est déjà là. Le concurrent direct dans ce secteur, Global Bioenergies, a, de son côté, la première usine de conversion de ressources renouvelables en isobutène. Celui-ci pourrait entrer dans la production de bioplastiques à partir de betterave et de céréales. Y aura- t-il de la place pour tout le monde ? India’s biggest clean up effort. Chennai is raising an army to fight the war against plastic Ryan Frantz folomojo staff 10/06/15
13 India’s largest socially-led cleaning initiative is happening in Chennai. The city is waging a war against plastic. Attention must be paid. Plastic is polluting our cities. Clogging our drains. Killing our cattle, and our marine life. Ruining the landscape and the environment. 6 years ago 150 CTC volunteers traveled to Tada, an ‘eco tourism’ spot and went deep inside the forest to restore the scenic Tada falls to its original natural beauty. 500 big bags with 2 tons of garbage including plastics and broken bottles were removed. An environmental awareness movement was born. Now in its 6th year, their ambitious target for June 7th is to collect 50+ tons of garbage from 20+ km of the Chennai sea shore with 8000+ volunteers. Chennai Trekking Club organised the first Chennai Coastal Cleanup in May 2010 during which 880 volunteers collected 8.9 tonnes of garbage along the 15-km coast from Marina to Injambakkam. A second edition followed in January 2011 with 1,000 volunteers collecting 9 tonnes of garbage. In February 2012, 45 groups participated and entered the Limca Book of Records for the fastest cleanup with 2,369 volunteers collecting 17.6 tonnes of garbage in two hours.
14 Last year a few volunteers even plunged into the sea and fished out plastic waste and abandoned nets from the sea floor. They collected waste from a depth of 17 metres. A turtle was also found dead among the debris. Garbage is properly segregated by kind and dispatched to the right agencies where it can be re-purposed, recycled or responsibly disposed of. Most of the plastics collected from beaches were also segregated and dispatched to an NGO, Hand in Hand to lay plastic tar roads. The road below, for example, was made using the 3.5 tons of plastic collected, segregated and recycled from the beaches during Chennai Coastal Cleanup 2013. One of the main arms of the campaign is the #noplasticchallenge to get people to minimise the use of plactic in their daily lives. A part of the initiative encourages plastic-free shopping by identifying and patronizing grocery retailers who use and encourage eco- friendly packaging. To fight the battle against the never ending stream of millions of plastic mugs and use-and- throw water bottles which are used every day, CTC’s creative team has designed some beautiful mug designs to drive awareness and usage. The initiative sees participation from all ages, classes and denominations – ranging from individuals, colonies, groups, and even corporates. It’s a wonderful, inclusive, organic initiative that is gaining momentum as the years go by. Here’s to simillar initiatives in the rest of India. Please do your bit to contribute to the movement. Do share and spread awareness as much as you can. Do visit www.chennaitrekkers.org to learn more and find out how you can be a part of the campaign. Pénurie de matières plastiques : premières ruptures chez les industriels (ndlr : bon pour les bioplastiques ou pas ???) Karine Ermenier | 12 Juin 2015 | La pénurie touche pour l'instant certains grades de polyéthylène et de polypropylène. Si la situation de pénurie de polymères perdurait, cela pourrait toucher un large spectre d'applications et mettre certaines industries de l'agroalimentaire et des boissons en situation de rupture d'emballages.. Les communiqués de presse envoyés par les professionnels de l'emballage en plastique pour dénoncer la pénurie de matières plastiques que font subir à l'Europe, depuis début 2015, les producteurs de polymères n'ont pour l'instant pas porté leurs fruits. L'organisation française Elipso (représentant les entreprises de l'emballage plastique et souple) et ses homologues allemand (IKA) et anglais (BPF et PAFA) en préparent donc un troisième. « Bien salé cette fois », annonce-t-on chez Elipso, car la situation s'aggrave. Fermeture de sites de production d'emballages La pénurie de polymères (sur certains grades de polyéthylène et de polypropylène notamment) est telle que plusieurs transformateurs de matières plastiques ont dû fermer des lignes, voire même des sites. « Et cela touche
15 indépendamment les petits comme les gros fournisseurs, a expliqué Serge Vassal, vice-président films d'Elipso, en marge d'une conférence de presse organisée sur le thème de la stratégie d'Elipso en matière d'économie circulaire. C'est une crise inédite. Sur les 12 fabricants de polyéthylène que compte l'Europe, neuf ont invoqué des cas de force majeure. » Au total, 38 cas de force majeure ont été annoncés en trois semaines (chaudière en maintenance, etc.) : la couleuvre est un peu grosse à avaler pour les transformateurs qui soupçonnent les fabricants de polymères d'organiser volontairement la pénurie pour faire remonter les cours. Des cours qui ont chuté en 2014 et qui remontent en flèche depuis début 2015. Comme en témoignent les prix moyens observés en Europe de l'Ouest en mai 2015, publiés par Elipso : - polystyrène cristal (PS) : 1 888 € la tonne (+ 33 % de janvier à mai 2015) - polypropylène homo injection (PP) : 1 580 € la tonne (+ 33,5 % ) - polypropylène copolymère (PP) : 1 627 € la tonne (+ 29 % ) - polyéthylène téréphtalate (PET) : 1 360 € la tonne (+ 30 % ) - polyéthylène basse densité (PEBD) : 1 646 € la tonne (+ 33% ) - polyéthylène haute densité soufflage (PEHD soufflage) : 1 628 € la tonne (+ 37%) - polyéthylène haute densité injection (PEHD injection) : 1 633 € la tonne (+ 37%) - polyéthylène haute densité film (PEHD film) : 1 631 € (+ 33%) « Ces hausses de prix sont déconnectées de la seule inflation du baril de pétrole », déplore Françoise Andres, la nouvelle présidente d'Elipso et par ailleurs dirigeante de l'entreprise Richard-Leleu depuis 1980. Gageons que de tels cours aideront peut-être les producteurs de polymères à résoudre leurs cas de force majeure. En attendant, nul ne peut le parier et nul ne sait quand cette pénurie cessera.Et surtout combien de temps les fabricants d'emballages tiendront, les plus fragiles surtout. SMICTOM des Flandres : bientôt des sacs 100% biodégradables trois fois plus chers Publié le 16/06/2015 Par CHRISTIAN TAFFIN Les sacs jaunes entièrement recyclables ont un coût Philippe Brouteele, président du SMICTOM, l’a annoncé à la toute fin de la réunion du conseil communautaire, lundi soir : « Dernière info, un peu révolutionnaire, le marché des sacs jaunes arrivait à échéance cette année. Il a fallu relancer une consultation. C’était des sacs jaunes issus du pétrole, qui étaient repris par le fournisseur. Il ne les reprendra plus à terme. Comme nous avons voulu réduire les déchets plastiques, le bureau a décidé de faire appel pour ce marché à des entreprises pouvant fournir des sacs biodégradables avec du plastique biosourcé, c’est-à-dire provenant d’une source végétale. Les nouveaux sacs seront 100 % biodégradables en compost » Le président a aussi expliqué qu’il y aurait une période transitoire pour supprimer petit à petit les sacs jaunes au profit des bacs afin de passer à la redevance ou à la taxe enlèvement des ordures ménagères incitative (deux possibilités, la décision reste à prendre). Actuellement, le SMICTOM utilise entre 150000 et 200000 sacs jaunes par an. Le remplacement des sacs jaunes actuels issus du pétrole par d’autres 100 % biodégradables aura un coût qu’a indiqué Philippe Brouteele : ça sera trois fois plus cher. La préservation de l’environnement est à ce prix. Une politique de communication très importante sera aussi mise en place pour faire baisser la consommation de sacs jaunes. Italy Clarifies Plastic Bag Law, Enforcement Starts in May Posted on June 17, 2015 by DrRossH in Plastic Limiting Regulations
16 A year after passing a nationwide plastic bag ban, the Italian government has identified the technical characteristics of plastic bags that can legally be used in a decree published in the Official Journal in March. Biodegradable and compostable plastic shopping bags will still be legal. Some plastic bags that are not biodegradable or compostable also will be legal, including those with a thickness exceeding 200 microns and containing a percentage of recycled plastic of at least 30 percent if intended food use. Also legal are plastic bags with a thickness greater than 100 microns and containing a percentage of recycled plastic of at least 10 percent if not for food use. Also permissible are bags made of reusable paper, fabrics of natural fibers, polyamide fibers and materials other than polymers, according to the decree. Des nouvelles d’ici et d’ailleurs… Algix brings algae-based 3-D printing filament to market June 18, 2015 Technology firm Algix LLC began commercial production of algae-based plastic filament for 3-D printing earlier this year — and the firm plans to increase capacity for the product before 2015 is over. Meridian, Miss.-based Algix launched commercial-scale quantities of algae-based compounds through its Solaplas unit in late 2014, and then this year added the filament product, marketing and communications leader Barbara Zeller said in a June 17 phone interview. Algix’s partner in the project — Meridian-based 3-D Fuel LLC — “wanted more sustainable, high-performing plastics,” she explained. Algix formulated a compound of algae with PLA bioplastic to meet that need. In addition to the filament product, Algix is making algae-based compounds for the foam and film markets. The foam product also is based on EVA.
17 Algix LLC expects to increase production of its algae-based 3-D printing plastic filament by the end of this year. The firm currently operates one twin-screw extruder that has the capacity to make several million pounds of material annually, Zeller said. Algix now employs 30, but could add 10-20 to that total by the end of the year. In addition to its headquarters, lab and production space in Meridian, Algix operates an algae processing site in nearby Daphne, Ala., where it processes algae gathered by mobile units from local catfish farming ponds. The firm’s products also have been used by Dordan Manufacturing Co. Inc., a thermoformer based in Woodstock, Ill. Algix was founded in 2010 by Ryan Hunt and Michael Van Drunen. Hunt worked on the Algix technology while a graduate student at the University of Georgia. “Plastics is our main focus, and it has been from the beginning,” Zeller said. Lego investing in creating sustainable plastic bricks June 18, 2015 BILLUND, DENMARK — Lego A/S will invest 1 billion Danish krone ($152.3 million) and hire more than 100 employees as it looks for sustainable materials to replace ABS used in its bricks, by 2030. The Billund-based toy maker announced the investment June 16. The company will create the Lego Sustainable Materials Center at its headquarters. The effort will include current Lego employees, but the company also expects to recruit more than 100 materials specialists during the coming years. Lego said the project is “dedicated to research, development and implementation of new, sustainable, raw materials” to make the bricks and other toy products, and packaging materials.” In a statement, Jørgen Vig Knudstorp, CEO and president of Lego, said: “This is a major step for the Lego Group on our way towards achieving our 2030 ambition on sustainable materials. We have already taken important steps to reduce our carbon footprint and leave a positive impact on the planet by reducing the packaging size, by introducing [Forest Stewardship Council] certified packaging and through our investment in an offshore wind farm. Now we are accelerating our focus on materials.” The company will establish Lego Sustainable Materials Center during 2015 and 2016, and the project will include satellite functions located at Lego operations around the world. Lego officials first said they wanted to find alternative materials in 2012. In a Plastics News story in 2014, Allan Rasmussen, senior project manager at Lego, said the company had tested some bricks using an impact-modified polylactic acid, a bioresin. But it’s a major challenge. The bricks have to work with the billions of Lego bricks already being used worldwide. Lego has been using ABS since the 1960s to make its iconic, interlocking bricks. Last year, the company made more than 60 million individual elements.
18 The colors have to match. And importantly, they have to remain clicked firmly together until pulled apart by the child — or the legions of adult Lego enthusiasts. Lego CEO Jørgen Vig Knudstorp says the company wants to have sustainable materials for its bricks by 2030. It’s also a huge plastics industry story: Lego operates more than 5,000 molds on more than 1,000 injection molding machines in Denmark, Mexico and Hungary. Lego is building a plant in Jiaxing, China, that is expected to begin full production in 2017. Lego owner Kjeld Kirk Kristiansen said officials understand the company’s important role of making toys that promote creativity. “Our mission is to inspire and develop the builders of tomorrow. We believe that our main contribution to this is through the creative play experiences we provide to children,” Kristiansen said in a statement. He called the investment “a testament to our continued ambition to leave a positive impact on the planet, which future generations will inherit.” Des encres biocompatibles et biodégradables pour des systèmes de traçabilité http://www.bulletins-electroniques.com 19/06/2015 Deux nouveaux brevets de l'Institut Italien de Technologie (IIT@Polito) relatifs à l'élaboration d'une encre imprimable à jet à base de polyaniline et graphène entièrement biocompatible et biodégradable, avec des caractéristiques de conduction importantes, ont été déposés récemment. Cette nouvelle encre porte à de multiples applications, de la traçabilité des aliments pour la protection du Made in Italy aux secteurs aérospatial et de l'électronique de grande consommation. Des encres biocompatibles et biodégradables pour des systèmes de traçabilité Crédits : IIT
Vous pouvez aussi lire