Des matériaux d'emballage alimentaire à base de fromage - Serpbio
←
→
Transcription du contenu de la page
Si votre navigateur ne rend pas la page correctement, lisez s'il vous plaît le contenu de la page ci-dessous
1 Des matériaux d'emballage alimentaire à base de fromage Des couches synthétiques à oxygène protègent les aliments, les produits pharmaceutiques et les cosmétiques contre tout contact préjudiciable avec l'air et l'humidité. Des scientifiques financés par l'UE développent de nouvelles couches barrières de nature biologique à partir de produits dérivés de fromage en vue d'une recyclabilité complète. © Thinkstock Les emballages barrières de pétrole sous soumises à une législation de plus en plus rigoureuse et à la pression des consommateurs en raison de leurs effets potentiels sur la santé et l'environnement. Ces pressions ont incité le précédent projet WHEYLAYER du septième programme-cadre (7e PC) à se pencher sur le développement de revêtements en film plastique composés de lactosérum, un dérivé naturel du fromage. WHEYLAYER a produit un biopolymère d'étanchéité en lactosérum qui peut remplacer les films plastiques issus du pétrole et être éliminé de façon enzymatique en vue de recyclabilité, en offrant de meilleures propriétés barrières que les biopolymères existants. Un brevet a été déposé et maintenant le projet WHEYLAYER 2 («Barrier biopolymers for sustainable packaging»), financé par l'UE, travaille à son industrialisation à grande échelle et à sa commercialisation. Une machine industrielle d'application et de séchage a été fabriquée et les simulations du processus de revêtement ont été validées. Les essais de production et les tests de stockage couvriront les tubes et les pots thermoformés destinés au secteur de l'agroalimentaire et des cosmétiques, ainsi que les blisters utilisés dans l'industrie pharmaceutique. Outre l'expansion de la production, les scientifiques ont étudié l'utilisation de concentré de lactosérum en remplacement des isolats de lactosérum (WPI) en vue d'obtenir une solution compétitive en termes de coûts. La substitution a été une réussite, présentant des propriétés barrières à l'oxygène très proches des meilleurs résultats obtenus avec des WPI. Les scientifiques ont produit des plateaux en chlorure de polyvinyle rigide (PVC-U) à revêtement WHEILAYER présentant un taux de transmission d'oxygène acceptable pour le conditionnement sous atmosphère modifiée. La métallisation pourrait améliorer à la fois les propriétés barrières à l'oxygène et la barrière à la lumière ultraviolette. Par ailleurs, les plateaux montrent un potentiel prometteur d'imprimabilité et des essais d'impression sont actuellement en cours. Des tests de certification de sécurité alimentaire seront menés et des fiches de données de sécurité et fiches de données techniques seront élaborées concernant les produits. Une
2 évaluation du cycle de vie a commencé, mais pour l'analyse complète, il faut attendre la fin des essais et la production des emballages définitifs. Le brevet WHEYLAYER est devenu accessible au public en janvier 2013. WHEYLAYER 2 développe des produits en biopolymère aux propriétés barrières pour l'industrie agroalimentaire, pharmaceutique et cosmétique à titre de solution alternative aux produits synthétiques issus du pétrole. L'excellente protection contre l'oxygène et l'humidité permet de baisser les coûts. Celle-ci ainsi que la recyclabilité complète sont assurées de conquérir une grande part du marché du conditionnement et d'être très profitables à l'économie de l'UE et la planète. Oh, Canada! Solegear lands $1.6m for bioplastic development By Jenni Spinner+, 28-Jul-2014 The developer of plant-based plastics for packaging and other applications has landed $1.6m in funding from a Canadian government program. Solegear Bioplastics, a company focused on developing plant-based plastics for food and beverage packaging as well as other applications, has landed $1.6m in funding from Canada's Western Innovation Initiative (WINN). The program is designed to encourage small- to medium-size businesses to commercialize their products, services, and processes. Sustainability growth Toby Reid, founder and CEO of Solegear Bioplastics, told FoodProductionDaily the federal development funds will provide a big push for bioplastic packaging growth. "If you look at how critical innovation is to a thriving economy, programs such as WINN are vital for innovative businesses, like Solegear, who are in the process of scaling up," he said. "We look forward to deploying these funds and continuing our growth toward becoming a leading global supplier of next generation, bio-based plastics." The recently launched WINN program distributed approximately $21m to 27 businesses across Western Canada. The organization plans to distribute a total of $100m to promising businesses in the region over the course of the next five years. Development encouragement Michelle Rempel, Minister of State for Western Economic Diversification, said WINN provides forward-thinking businesses like Solegear the momentum they need to promote themselves, and fuel the local economy. "Through WINN, we are filling a funding gap identified by Canadian business, and re- affirming our government's commitment to providing opportunities for jobs and growth," he said. The award is not the first recognition Solegear has landed this summer. In June, its home city of Vancouver, BC saluted the company in its inaugural Awards of Excellence program. The company won recognition in the "Green: 25 employees and Under" category; it also was given the Best Emerging Technology Award by the Globe Foundation earlier this year. Valentis Nanotech coating to replace aluminum foil in flexible packaging By Jenny Eagle+, 24-Jul-2014 Valentis Nanotech, part of Trendlines Agtech, has signed an MOU with one of Israel's
3 agricultural thermoplastics applications companies to create improved polymeric films. The technology combines nanocrystalline cellulose (NCC), a biodegradable, transparent material made from plant pulp waste, with additional nanoparticles. Thinner and cheaper layers Dov Segev, CEO, Valentis Nanotech, told FoodProductionDaily, he could not disclose the name of the company but the technology was a breakthrough for the industry. He said the first product will be a transparent coating integrated in a polymeric laminate, which avoids using aluminium foil in high barrier flexible packaging for food. "To meet the demand for new products and greater functionality, thermoplastic layers are added to a packaging film, which makes them thick and heavy, and increases the cost," he said. "Manufacturers are always looking for ways to make the layers thinner and cheaper. High- barrier food packages, for example, integrate multiple layers - including one of aluminum foil — to prevent food deterioration due to oxidation, moisture, and UVpenetration. "The market need for improved thermoplastic films which are thinner, stronger and greener is tremendous." NCC - the material of the future? NCC is coming into focus as a material of the future, projected to create a $600bn industry by 2020 (US National Science Foundation). Incorporating different nanoparticles into Valentis' composites adds new functionality (for example, piezoelectric or antibacterial properties) that can be tailored to specific applications and needs. Segev who is based at the Faculty of Agriculture, Israel, said the collaboration will enable the company to increase its product range and apply the technology to other industries or other types of food packaging and it was in talks with a number of food manufacturers. It can be used as a coating for increased strength or as a barrier against UV rays, oxygen and moisture. The goal of the collaboration is to create improved products by integrating Valentis Nanotech's platform technology with market needs as defined by the thermoplastics company and the production methods in this industry. Un pôle lyonnais pour la détermination du contenu en Biosourcé Publié le 11 août 2014 par Sylvie Latieule L’ISA pressenti pour abriter le pôle lyonnais de détermination du contenu biosourcé.
4 Article paru dans la revue Formule Verte n°17 / mars 2014 Alors que la mesure 14C n’est proposée en routine que sur le continent nord américain, l’Institut des Sciences Analytiques de Villeurbanne pourrait se positionner comme un nouvel acteur européen. Cette technologie est indispensable à la méthode ACDV de détermination d’un contenu biosourcé. Le développement de la chimie du végétal permet de créer une nouvelle chimie plus respectueuse de l’environnement, de diminuer l’empreinte carbone et réduire la dépendance aux énergies fossiles. La conception de composés biosourcés est aussi un argument commercial et le consommateur sensible à cette problématique devra être sûr de l’origine biosourcée de ces nouveaux produits. Dans le contexte actuel, des travaux de normalisation français et européens sont en cours visant à développer des méthodes analytiques de détermination du contenu en biosourcé de produits chimiques intermédiaires ou de produits finis. Traditionnellement, la teneur en matériaux biosourcés d’un produit est abordée par le biais du ratio en carbone biosourcé selon la méthode de datation au carbone 14, comme aux Etats-Unis dans la méthode ASTM D 6866. Cette méthode s’appuie sur des techniques de spectrométrie de masse couplée à un accélérateur ou de comptage par scintillation liquide. Elle correspond en Europe à la future norme sur la détermination de la teneur en carbone biosourcé qui sera publiée dans quelques mois sous la forme d’une spécification technique. Les partenaires européens travaillent actuellement au sein du CEN à la rédaction d’une méthode proposée par l’A.C.D.V. Elle allierait la mesure du 14C et la détermination des éléments organiques afin d’apporter une réponse plus complète sur la teneur en Biosourcé. Le Centre de Datation par le Radiocarbone (détermination de l’activité en 14C) et le laboratoire d’analyse élémentaire organique et isotopique (déterminations CHNOS et 13C, 15N 18O et 2H) de l’Institut des Sciences Analytiques (ISA) du CNRS installés tous les deux à Villeurbanne collaborent depuis plus de 20 ans sur de nombreux projets analytiques. Ils ont entamé récemment une collaboration permettant d’associer leurs techniques dans l’objectif d’apporter une solution optimale pour la connaissance des composés biosourcés. Ils disposent du savoir-faire et des disponibilités pour pratiquer de façon courante l’analyse du 14C et l’analyse élémentaire. Par ailleurs, la mesure des isotopes par spectrométrie de masse des rapports isotopiques stables organiques 13C, 2H, 15N et 18O serait une méthode alternative complémentaire à la méthode de référence. Cette technique est utilisée depuis longtemps dans l’authentification des composés naturels par rapport aux origines synthèses (aromes, huiles essentielles…). Des travaux complémentaires devraient permettre la mise au point de méthodes de détermination du contenu en biosourcé utilisant cette technique. Elles permettraient d’obtenir des résultats équivalents avec un coût financier et un temps d’analyse plus court et seraient utilisables sur des produits très spécifiques (en exploitant les variations isotopiques en fonction des origines végétales). n Contact : Christine Oberlin (oberlin@univ-lyon1.fr) CDRC et Patrick Jame (p.jame@sca.cnrs.fr) CNRS ISA
5 Focus sur la détermination du contenu biosourcé Bien que l’analyse du carbone 14 permette de dissocier l’origine biosourcée et l’origine fossile du carbone d’un produit commercial, elle n’identifie pas toujours son véritable contenu biosourcé (le produit étant aussi constitué d’autres éléments tels que azote, oxygène…), au risque de le sous-estimer. Pour pallier ce problème, SGS, en partenariat avec l’ACDV, a mis en place une méthodologie destinée à attester le taux d’origine biosourcé de tout type de produit (liquide, solide, gazeux…). Cette méthodologie comprend une mesure de 14C et des analyses des différents éléments chimiques présents dans le produit. Elle fait actuellement l’objet d’un projet de normalisation européenne au CEN/TC 411. L’attestation émise par SGS donne droit à l’apposition du logo indicateur, délivré par l’ACDV. PLASTIC FREE ISLAND – KEFALONIA This article was posted on Aug 05 2014 by Tracy Russo “We begin with one island”: PLASTIC FREE ISLAND – KEFALONIA The collaboration between The Drifters Project & Plastic Pollution Coalition + Ionian Center Metaxata The PPC has been “cruising the Greek Isles”— cruising for plastic pollution that is. Throughout the month of July, the Plastic Pollution Coalition’s Dianna Cohen continues her collaboration with visual artist, PPC member, and Drifters Project founder, Pam Longobardi to launch Plastic Free Island—Kefalonia, a pilot project which integrates social engagement and art-based activism to raise awareness about the harmful impacts of plastic pollution. The primary objective of this multi-year pilot program is to shrink the island of Kefalonia’s own plastic footprint by offering strategies for measurably reducing the use of single-use, disposable plastics. By the end of the PPC’s ten-year commitment to this project, Kefalonia will be able share a “road-tested” template for integrating active-learning programming, engaged community research, and public-art activist projects all directed at raising awareness of the ecological crisis, and creating the public will to combat it. Several island neighbors await the final template, which will be be transferrable to any island community or island nations worldwide who seeks significant reductions in plastic pollution.
6 While no place on earth is exempt from the negative impacts of plastic pollution, in a country such as Greece that depends economically on tourism, the urgency of a vigorous response is felt sooner and more keenly. Kefalonia Vice Mayor Evangelios Kekatos publicly introduced the Plastic Free Island—Kefalonia initiative to the island community on behalf of the municipal government. And Sophia Kagadis, the director of the Ionian Center for the Arts in Metaxata, once again offered the support and resources of the Center to the project. First steps toward reducing the plastic footprint There are many stunning Greek islands— but Kefalonia is believed to the birthplace of the epic poet, Homer. Kefalonia is not alone though in the facing tens of thousands of plastic trash washing up its shores: single-use water and drink bottles, shopping bags, cups, straws, cigarette butts, and polystyrene, to name the most common items. While some of the plastic waste may originate from the global cruise- ship fleet and other recreational craft, much of it hitches a ride on ocean currents in the Mediterranean Sea, and yet more is deposited by the islanders themselves. No matter what the source, the plastic scourge threatens the health of Kefalonia, of the local and national economies, and the health of all inhabitants and ecosystems. Plastic Free Island—Kefalonia set these objectives for its first year: Engage the local community in plastic reduction through education, art. Done. This year’s community participation exceeded expectations in terms of the number of clean-up volunteers, more than 100 schoolchildren engaged in educational and creative art experiences including the S.O.S. Ocean Children’s Program and the plastic pollution clean up at Fanari beach, and in terms of local business and government support. Clear beaches of plastic pollution. Done. Building on The Drifters Project’s restoration of Kefalonia’s many sea caves and remote beaches, Plastic Free Island—Kefalonia shift attention to the coastline near more populated areas. Project directors Longobardi and Cohen led the cleaning of seven beaches on the island, with help from the local Pirate Divers’ Club, and kayakers from Elements Outdoor Activities. In cleaning of the following seven beaches, we found over five thousand pieces of plastic of varying sizes: Ammes 791, Spasmata 398, Crocodile 594, Fanari 1163, Assos 1471 and Lagoon 905.
7 Create continuous active-learning experience for young and not-so-young participants, according to Longobardi’s “forensic” pedagogy. Done. Every clean-up involves a “forensic analysis” session at the “scene of the crime.” Following the “forensics” metaphor, participants studied the evidence they collected from the caves and coasts. Longobardi’s Masters’ students from Georgia State University in the United States developed data sets recording: the number of items found, and where; the categories of artifacts washed up: consumer items (cups, bottles, straws, bags, polystyrene packaging, etc.) and commercial/industrial (buoys, driftnets, containers, more polystyrene, etc.). Students from the University of Sydney in Australia also joined the cohort of Greek and American researchers. Create large-scale public art to expose and communicate the problem. Done. Art made from locally found plastic pollution was front and center at a gallery exhibition hosted at the Ionia Center for the Arts. One highlight: A town-square “happening” where Plastic Free Island—Kefalonia debuted the large-scale public art installation, Ouroboros, named after a mythical snake-like creature who is typically represented with its tail in its mouth. With 500 people on hand, the Ouroboros “came to life” for the community that had helped to construct it. This spectacular performance-art event was the set-piece for a whole day of educational films and activities, including the premiere of a film trailer publicizing the future release of a fuller documentary on the Plastic Free Island project, that began on their own island. While Kefalonians had participated in and heard about the project activities, project leaders used these last days to pull it all together: the holistic concept of Plastic Free Island— Kefalonia was laid out before this audience, many of whom had been involved in small parts of the project.
8 Engage local businesses to participate in “plastic audits” and work toward plastic reduction. Done. It wasn’t only individual PEOPLE who were asked to think about their plastic footprints. A dozen local vendors and businesses supported the launch of the Plastic Free Island. Dozens of business owners were engaged in conversation about plastic reduction practices, and in an ongoing process to address their plastic consumption, to identify and work toward plastic reduction while identifying alternatives. To date we have several sector leaders who have signed on as Plastic Free Island—Kefalonia supporters: These inclue: The Restaurant – Milos in Ammes; The Market – Stamoulis in Argostoli; The Hotel – Irinna in Svornata. These businesses will need to achieve basic plastic reduction steps and goals to become formally certified as a Plastic Free Island—Kefalonia business. While the PPC and The Drifters Project accomplished a lot this summer through their collaboration with the island of Kefalonia, only a few of the many exciting activities and conversations are even mentioned here! There was so much more. Take a look at the links at: www.plasticfreeisland.com and the photo gallery to see the scope of our program, and the passion of all its participants! Turning vegetable waste into bioplastics August 9, 2014 squaremax Italian team find new ways of converting vegetable waste into bioplastics. Italian researchers from the Italian Institute of Technology (IIT) have found a new way of turning vegetable waste directly into bioplastics that they say is more efficient and environmentally friendly than existing techniques to produce bioplastics. Current bioplastics are created by processing plant material to create monomers, which link up to create the longer polymer molecules that make up plastics. Although the resulting material is usually biodegradable – making it a greener alternative to regular plastic – the way it is produced has come under criticism. According to Ilker Bayer from IIT, making bioplastics takes multiple steps, requiring more energy, and often uses crops that could otherwise be used for food. Ilker Bayer and his team say they have found a better way. They uncovered it while looking
9 at the process for creating cellophane, which involves passing cellulose – the material that makes up plant cell walls – through multiple acid and alkali baths. They discovered that dissolving cellulose from cotton and hemp in trifluoroacetic acid converted it directly from its naturally crystalline form to an amorphous form suitable for molding into plastic without the need for any further processing. They replicated the process on vegetable waste products, including rice hulls, cocoa pod and spinach and parsley stems from an Italian company that powders vegetables for use in vegetable drinks and some pastas. “These are the parts we don’t want to eat,” says Ilker Bayer. “They could all be easily converted into useful bioplastics, with different properties, based on the starting material – rubbery for spinach, but firmer for rice hulls.” The new materials have a different combination of stiffness and stretchiness compared to both existing bioplastics and traditional plastics. They can also inherit the properties of the original plant, meaning parsley plastic could have antioxidant properties, or cinnamon plastic could be antibacterial. Global Succinic Acid Market to Grow at a CAGR of 19.4% from 2012-18, Forecasts TMR SpecialChem - Aug 14, 2014 According to the report, the global succinic acid market is estimated to grow from a value of USD 240.3 million in 2011 to 836.2 million in 2018, observing growth at a CAGR of 19.4% between 2012 and 2018, the forecast period of the report. The major factor that has triggered the growth of the global acid market is the overall rise in construction and infrastructure development activities around the globe, which has consecutively led to an increased demand for products such as polyurethanes, coatings and resins. The constant changes in the price of its conventional feedstock – petroleum derived maleic anhydride – are a major restraining factor for acid manufacturers. Concerns for the industry are also on rise due to rising environmental concerns amongst the end-user which has led to the rising adoption and demand for green products. To overcome these hindrances, manufacturers from throughout the globe are gradually making their shift from conventional manufacturing methods to biobased manufacturing methods. The global succinic acid market is huge. In 2011, its estimated market value was USD 240.3 million. Market analysts estimate that the growing demands for products such as 1,4- butanediol, plasticizers, polyurethane, coats and paints, dyes and inks, pharmaceutical applications and resins could trigger the demand for succinic acid on a global front in the coming years. Currently, demand for succinic acid is high for the production of coatings, resins, inks and dyes. Together, these application areas accounted for a 20.8% share of the total global demands of succinic acid in 2011. The second highest market shares of succinic acid
10 consumption, nearly 13%, were held by the pharmaceutical industry in the same year. Volume-wise, the polyurethane industry accounted for nearly 12% shares in 2011. Globally, Europe stands as the lead consumer of succinic acid. In 2011, an estimated 33.6% of the global demands for succinic acid were accounted to Europe. This was followed by Asia Pacific in the same year with an estimated 29.6% shares of the overall market. North America also closely followed, with an estimated 29.2% shares of the market, in the same year. In the coming years, demands from this region are estimated to surpass any other geographic region in the world, owing to the rise in construction and infrastructure development activities in this region, which subsequently could result in a substantial rise in demands for products such as coatings, dyes, resins, etc – products that use succinic acid as their core feedstock. Global Glycerol Demand to Grow at a CAGR of 6.4% from 2014-20, Predicts Grand View Research SpecialChem - Aug 13, 2014 The global market for glycerol is expected to reach USD 2.52 billion by 2020, according to a new study by Grand View Research, Inc. Biodiesel emerged as the leading source of glycerol, accounting for over 1,400 kilo tons of glycerol production in 2013. Growing application market coupled with increased production of oleochemicals in Asia Pacific is expected to augment glycerol demand over the forecast period. Personal care and pharmaceuticals were the largest application segment, with glycerol consumption exceeding 870 kilo tons in 2013. However, food & beverage is expected to be the fastest growing application segment at an estimated CAGR of 8.4% from 2014 to 2020, owing to improving lifestyle in emerging economies leading to increased consumption of processed and packed foods. Further key findings from the study suggest: Global glycerol demand was 2,247.2 kilo tons in 2013 and is expected to reach 3,469.2 kilo tons by 2020, growing at a CAGR of 6.4% from 2014 to 2020. Biodiesel was the largest source for production of glycerol accounting for 62.96% of the market in 2013. However, fatty alcohols are expected to be the fastest growing source for glycerol production at an estimated CAGR of 8.3% from 2014 to 2020. Alkyd resins and foods & beverages followed personal care & pharmaceuticals accounting for a market volume of 12.94% and 12.22% respectively. Asia Pacific was the leading regional market and accounted for 37% of market volume in 2013. It is also expected to be the fastest growing market for glycerol at an estimated CAGR of 7.8% from 2014 to 2020. The global glycerol market is highly concentrated with the top four companies including IOI Group, KL Kepong, Emery Oleochemicals and Wilmar International accounting for over 65% of market revenue in 2013. Other companies operating in the market include P&G, Kao Corporation, Cremer Gruppe and Oleon
11 Mexico’s PE suppliers denounce oxo-biodegradables 08.08.2014 Mexico’s three biggest polyethylene suppliers have denounced oxo-biodegradable technology in a letter to the country’s national association of supermarkets and departmental stores, (as Plasticsnews.com published on July 31). “We consider that the use of degrading additives is not a sustainable way of tackling this issue [of waste management], as it has not been proven indisputably that materials containing such [biodegrading] additives really do biodegrade in landfills or can be recycled. In other words, degrading additives do not add value to plastic waste, including polyethylene waste,” the letter from Braskem Idesa SAPI, Dow Química Mexicana SA de CV and Pemex Petroquímica stated. In the letter, the trio of PE suppliers said they had written to ANTAD after becoming aware that some of the association’s members had been specifying the use of oxo-biodegradable additives in their PE shopping bags and packaging. “We believe that, together with the use of said additives, a message is being spread that [oxo- biodegradable technology] is environment-friendly, which confuses and deceives society and consumers, inducing them to dispose of waste inadequately, thus damaging the environment and efforts to recycle the material,” the letter’s authors wrote. They added that on April 16 the European parliament voted in favor of modifying directive 94/62/EC on packaging waste and which urged member countries to “drastically reduce materials that contain oxo-biodegradables to the point where they are eliminated altogether.” (Source plasticsnews.com / MT) Editor's note (Michael Thielen) bioplastics MAGAZINE asked suppliers of such additives again and again to provide scientifically backed evidence. We did not receive any proving a complete biodegradation. They show mechanical fragmentation and some biodegradation (proven by the generation of CO2)... But this ends and 30 or 40 % in a Plateau. Then they extrapolate and say "eventually it will completely degrade". But such extrapolation is not allowed. As soon as we receive scientifically backed evidence and test results from an independent lab showing complete biodegradation by the generation of CO2 in a given timeframe under controlled conditions), we'll be happy to publish these results. Petite Base de données IBIB 2014-2014 http://www.bio-based.eu/iBIB Le Plastique devient Biodégradable Une interview du professeur Stéphane Bruzaud dans KiteBoard 85H de juillet –août 2014 Nous sommes en 2064 après César, toute la Gaule est envahie par des plastiques polluants. Toute ? Non ! Un petit village d'irréductibles chercheurs du laboratoire de recherche de l'UBS
12 (Université de Bretagne Sud), à Lorient, résiste encore et toujours à la fatalité, et s’est mis en tête, en composant quelques recettes de potions magiques, de vous proposer du plastique biodégradable dans les années à venir! Le « Bio » vient du labo. Le professeur Stéphane Bruzaud du LIMATB à l’Université de Bretagne Sud nous montre dans sa main droite des « pellets » prêts à l’emploi et dans sa gauche ce que l’on en fait après extrusion Si vous dites au shapeur Juanito que sa mousse de Petroleum dinosaurus sera bientôt remplacée par des résidus de carottes du champ d'à côté, digérés par des microbes de moules, il va devenir vert ! Quand il vous sort les échantillons d'un sac Roxy, vous vous dites naturellement qu'il est cool, le mec, mais quand il commence sa démonstration, vous comprenez très vite que vous entrez dans un autre univers, passionnant. Stéphane Bruzaud, Professeur à l'UBS, a accepté de par- tager ses recherches avec nous le temps d'une petite interview très naturelle (bio, quoi...) Oui êtes-vous? Stéphane Bruzaud : Je suis Stéphane Bruzaud, Professeur et chercheur à l’Université de Bretagne Sud, chimiste de formation. J'enseigne à tous les niveaux universitaires et en particulier en master «Eco-conception: polymères et composites», où l'on essaie de transmettre aux étudiants les bases qui permettent de concevoir des nouveaux matériaux en étant beaucoup plus respectueux de l'environnement. Ma spécialité en laboratoire est d'imaginer de nouveaux matériaux qui soient à la fois biosourcés, c'est-à-dire obtenus à partir de matières renouvelables autres que le pétrole (la matière de base pour fabriquer des plastiques), et qui présentent également la caractéristique d’être, en fin de vie, biodégradables.
13 Je m'intéresse donc aux deux aspects: fabriquer un produit d'origine renouvelable qui soit rapidement biodégradable en fin de vie. L'objectif est de répondre à toutes les questions liées à la pollution des déchets plastiques, dont le volume augmente constamment. Vous produisez du plastique à partir de quelles matières? Beaucoup de pistes sont envisagées dans les laboratoires. Depuis plusieurs années, je m'intéresse à valoriser des déchets de l'industrie agroalimentaire bretonne. Certains plastiques peuvent être produits par des processus de fermentation, en utilisant des bactéries et des sources de carbone. Dans le projet PHApack, que je développe spécifiquement depuis plusieurs années en laboratoire, nous travaillons à partir de bactéries marines prélevées au large des côtes bretonnes, sur des palourdes ou des coques. Ces bactéries travaillent ensuite sur des déchets de la filière fruits et légumes de l’industrie bretonne. Notre démarche s'intégre au mouvement actuel de relocalisation des modes de production, pour éviter les circuits et les trajets longs. Il serait aberrant de produire de la canne à sucre au Brésil, pour créer un objet en bioplastique en Chine, qui serait ensuite utilisé en France. De tels trajets sont très négatifs pour l’environnement. L’objectif est donc de relocaliser des productions, en essayant de limiter au maximum les circuits. Quelle est la biodéqradabilité de ces plastiques biosourcés? Il y a une notion de temps dans la biodégradabilité. Un plastique classique se dégrade en une ou plusieurs centaines d'années. Aujourd'hui, des normes européennes fixent les exigences que doit avoir un plastique pour être labellisé comme « biodégradable», et dans notre cas il faut qu'à partir d'un an on ait dégradé au moins 90% de la masse initiale de l’objet. C'est assez rapide mais c’est un processus effectué dans des conditions spécifiques de dégradation, à savoir le compostage. Ces cinétiques de dégradation sont incomparables avec celles des plastiques standards, d'origine pétrochimique, très lents à se dégrader. C'est une dégradation plus rapide que le bois ! Cela dépend du matériau, parce qu’il y a une multitude de bioplastiques, qui ont chacun une biodégradabilité qui leur est propre. Cela dépend en premier de la forme de l’objet: plus il sera gros plus il mettra de temps à se dégrader. On est sur des processus relativement respectueux de l'environnement, avec à la fin une production d'eau et de dioxyde de carbone sous forme de terreau (humus). On rentre dans le cycle de la photosynthèse, car le C02 relâché lors de la dégradation va être réutilisé par les végétaux. Depuis quand travaille-t-on sur un plastique biosourcé et biodégradable? C'est une thématique relativement récente. Cela fait une quinzaine d’années maximum que les chercheurs s'intéressent à produire des plastiques qui soient plus respectueux de l'environnement. La production de plastiques traditionnels a explosé depuis les années 60, parce qu'ils ont beaucoup d'atouts: légers, transparents, non toxiques, résistants à la déchirure... Ils ont beaucoup de qualités qui expliquent qu'ils se soient beaucoup développés ces cinquante dernières années. Mais aujourd'hui, compte tenu de tous les déchets que peut générer l’industrie plastique, il commence à devenir urgent de trouver des solutions qui soient plus adaptées, notamment sur la fin de vie de ces produits. Pourra-t-on remplacer tous les plastiques existants?
14 En théorie, on peut l’imaginer. Pour l’instant, le secteur le plus intéressé par les bioplastiques c’est l'emballage. Aujourd'hui, quand on conçoit une bouteille en plastique ou un sac en polyéthylène, la durée de vie de cet emballage va atteindre quelques centaines d'années, ce qui est complètement aberrant si l’on compare la durée de vie du matériau à la durée de vie de son utilisation: vous allez utiliser un sac de supermarché pour transporter vos courses de la grande surface à votre habitation, en quelques minutes, alors qu'il va peut-être mettre des siècles à se dégrader. L'intérêt pour l'industrie de l’emballage est d’arriver à raccourcir la durée de vie d’un plastique, pour arriver à en produire qui soient rapidement biodégradables, et qui génèrent moins de déchets. Aujourd'hui, il y a aussi d'autres industries, comme l’automobile, le bâtiment ou le nautisme, qui développent des plastiques biodégradables et biosourcés, afin de limiter l'utilisation de ressources pétrochimiques. Pourra-t-on faire des planches de surf, des fils synthétiques ou des voiles avec ce plastique? On espère en être capable. Aujourd'hui, on sait fabriquer des mousses bioplastiques. Mais on ne va pas révolutionner l'industrie plastique ou du nautisme du jour au lendemain. C’est toujours des parts de marché qui se gagnent petit à petit. On va progressivement substituer une partie de l’objet par des bioplastiques, de manière à écoconcevoir et diminuer l'empreinte sur l’environnement. Ces processus sont progressifs. Aujourd'hui, pour différentes raisons, aussi bien économiques qu'industrielles, il est compliqué de substituer totalement un objet par une matière exclusivement bioplastique. Gaspard Larsonneur charge un gros paquet à l'île aux Vaches. Le fera-t-il bientôt avec une board en bio-composites? A long terme, une planche 100% biodégradable, c'est une utopie? Non. Aujourd'hui, en laboratoire, on est capable de faire des prototypes en biocomposite, avec une matrice bio et une fibre végétale. Certaines entreprises développent déjà ce type d’objet. Plasmor fait des kayaks biodégradables à base de biocomposites. C'est une question de rentabilité? Les bioplastiques sont nettement plus chers que les plastiques traditionnels. C’est une question de marché. Pour l'instant il est réduit et le coût de ces matériaux est plus élevé. Cela dépend maintenant de la consommation des citoyens. Plus le marché va être important, plus le coût va baisser. C'est le principe de l'offre et de la demande. Mais il faudra accepter qu'un bioplastique ne soit pas moins onéreux qu'un plastique pétrochimique. Il y aura toujours un petit supplément de coût à la production.
15 Peut-on envisager une disparition totale des plastiques à base de pétrole? Un des freins des bioplastiques est leur tenue en température. Ce sont pour l'instant des matériaux qui tiennent moyennement les fortes chaleurs. Dans certaines applications, qui demandent des résistances à des températures élevées, il n’est pas encore envisagé d'applications avec les bioplastiques. Par contre, dans des conditions thermiques et dynamiques raisonnables, c'est possible. Le secteur est en plein boom ou la crise a-t-elle un impact? Aujourd'hui, c'est compliqué de développer de nouveaux matériaux à des prix supérieurs dans le contexte de la crise. Toutes les entreprises liées à la chaîne de production du plastique ne peuvent répercuter un surcoût lié à l’environnement. Avec la crise, le critère principal c'est le rapport performance/coût. Le facteur environnemental était davantage prédominant il y a quelques années. Avez-vous d'autres spécialités liées au plastique? Je suis également associé à Tara et à l'association «Méditerranée en Danger», qui font des campagnes régulières où l’on prélève tous les plastiques polluants dans cette mer. Je suis ensuite chargé d'identifier ces matières plastiques, en trouvant à quelle famille de plastique correspond chaque échantillon: polypropylène, polyéthylène, polyamide, polystyrène... On promeut ensuite les polymères biodégradables en proposant des solutions de substitution, pour remplacer tel plastique par tel bioplastique, de manière à minimiser les conséquences en terme de pollution marine. On a également fait des études sur des plages atlantiques et la situation est incomparable avec la Méditerranée! Cela peut s'expliquer par des comportements citoyens et des flux touristiques différents, sans parler des conditions climatiques et géographiques différentes, comme la conjonction marées-courants-vents, qui n'existe pas en Méditerranée. Ce sera l'objet d'une thèse dès la rentrée où, avec des collègues en sciences humaines, nous allons tenter d'identifier et d'expliquer cette pollution. Les jeunes sont plus sensibilisés à ces questions, et j'interviens parfois en collège pour expliquer la nature et les conséquences de cette pollution.» INRA & AgroParisTech develop method for plant based Bisphenol A alternatives August 15, 2014 squaremax Research scientists from INRA (French National Institute for Agronomic Research) and AgroParisTech ( the leading French Agronomic Engineering University) have developed a bio-catalytic method using plant biomass to produce a range of compounds that could replace Bisphenol A . In addition, the application properties of those compound can reportedly be tuned as required. The controversial use of bisphenol A Bisphenol compounds are included in the composition of different polymers (polycarbonates, polyesters, polyurethanes, etc.). Inexpensive, they have the advantage of endowing these matrices with thermo-mechanical, plasticizing and/or antioxidant properties, which are
16 notably sought for packaging applications. Their principal drawback is their proven toxicity to humans and more globally to the environment. In the long term, a tightening of the EU REACH regulations may merely ban their use, and particularly that of bisphenol A (BPA) in products destined to come into contact with food and human body (packaging, cosmetics and health sectors, etc.). Using plant phenols for the ecological production of a range of replacement compounds with tunable properties The methodology developed by the scientists specifically uses plant based raw materials: platform molecules resulting from the conversion of cell wall polysaccharides, ferulic acid from lignocellulose, and glycerol. The first two stages of this synthesis are chemical transformations that are widely applied in industry and have a limited environmental impact. The third stage is a bio-catalytic condensation process which involves a commercial lipase. This process does not require either the use of chemical protection/deprotection reactions, or the use of of solvents. The method is highly flexible because it enables the condensation of a ferulic acid derivatives with different compounds (such as polyols or polyamines) in order to produce a broader range of compounds with tunable properties. The new bisphenolic compounds thus obtained exhibit excellent thermal stability up to a temperature of 250 °C. They can be used as antioxidants/anti-free radical substances and/or as biosourced plasticisers which display no endocrine disrupting activity. An innovative application: the synthesis of new bio-sourced “plastic materials” Because of their properties, these new bisphenols could be used in replacement of bisphenol A to make food packaging. They could also be employed as monomers for the synthesis of new polyesters or polyurethanes. After a phase of further functionalization, they can also be used as monomers for the synthesis of polyamides or polyolefins. The range of potential applications is consequently very large. Turning vegetable waste into bioplastics August 9, 2014 squaremax Italian team find new ways of converting vegetable waste into bioplastics. Italian researchers from the Italian Institute of Technology (IIT) have found a new way of turning vegetable waste directly into bioplastics that they say is more efficient and environmentally friendly than existing techniques to produce bioplastics. Current bioplastics are created by processing plant material to create monomers, which link up to create the longer polymer molecules that make up plastics. Although the resulting material is usually biodegradable – making it a greener alternative to regular plastic – the way it is produced has come under criticism. According to Ilker Bayer from IIT, making bioplastics takes multiple steps, requiring more energy, and often uses crops that could
17 otherwise be used for food. Ilker Bayer and his team say they have found a better way. They uncovered it while looking at the process for creating cellophane, which involves passing cellulose – the material that makes up plant cell walls – through multiple acid and alkali baths. They discovered that dissolving cellulose from cotton and hemp in trifluoroacetic acid converted it directly from its naturally crystalline form to an amorphous form suitable for molding into plastic without the need for any further processing. They replicated the process on vegetable waste products, including rice hulls, cocoa pod and spinach and parsley stems from an Italian company that powders vegetables for use in vegetable drinks and some pastas. “These are the parts we don’t want to eat,” says Ilker Bayer. “They could all be easily converted into useful bioplastics, with different properties, based on the starting material – rubbery for spinach, but firmer for rice hulls.” The new materials have a different combination of stiffness and stretchiness compared to both existing bioplastics and traditional plastics. They can also inherit the properties of the original plant, meaning parsley plastic could have antioxidant properties, or cinnamon plastic could be antibacterial. Plants Transformed to 100% Biodegradable Plastic (ndlr: PUB) Meredian’s customers use our PHA biodegradable plastics to manufacture packaging sustainably —completely free of the petroleum substances historically used to manufacture plastics. The applications for use of Meredian PHA bioplastic and the environmental impact are huge. PHA food service implements and utensils, single-use cups and takeout containers, containers for liquid products such as bottles, personal care items, plastic film for goods packaging, and non-woven fabrics for personal care, diapers and hygiene applications, to name just a few, can all be 100% composted. Major consumer brand partners continue to create innovative, biodegradable containers and packaging from Meredian PHA bioplastic, thus building a solution to global plastic pollution. Unlike petroleum plastics, biodegradable PHAs are naturally occurring polymers produced by bacteria through the fermentation of plant derived oils, under specific nutrient conditions. Meredian’s products use locally grown canola oil and are not only functional, but are completely biodegradable in soil, water, or if discarded as litter. Today, the world uses 300 billion pounds of petroleum-based plastics. Meredian’s highly functional bioplastics can replace a significant portion of that environmental load— further reducing landfill burdens with multiple end-of-life options including recycling, back yard composting and anaerobic digestion. These Meredian PHA plastics originate by growing out of the earth and after the service lifespan, return to the earth in twelve to eighteen weeks.
18 The Environmentally Responsible Alternative to Petroleum Meredian PHA is produced via a patented fermentation process, using locally grown canola oil as our feedstock for naturally occurring bacteria. This sustainably produced canola is grown locally by a partnership of farmers, is non-GMO, and does not compete with food supply markets. Our Meredian PHA materials have been certified by the leading laboratories in the world for both safe biodegradation and for use in food contact applications. Recently, Meredian’s MCL- PHA was given FDA approval for food contact. Meredian PHA can also be combined with other bioplastics to create hybridized biopolymers with innovative and useful qualities, while retaining the biodegradability standards for compostability. Meredian’s scientific leadership includes a unique focus: customization for clients’ production systems. Meredian will build the PHA-based materials that meet your needs. Dyadic & CIMV Collaborate to Commercialize Second Generation Bio-based Chemical Technology SpecialChem - Aug 8, 2014
19 Jupiter, Fla. -- Dyadic International, Inc. ("Dyadic") (OTCQX: DYAI), a global biotechnology company whose patented and proprietary technologies are used to develop, manufacture and sell enzymes and other proteins for the bioenergy, bio-based chemical, biopharmaceutical and industrial enzyme industries, has signed a collaboration agreement to commercialize second generation biofuel and bio-based chemical technology with Compagnie Industrielle de la Matière Végétale ("CIMV"), among the pioneers in developing processes for the production of biofuels and bio-based chemicals. CIMV's patented approach of separating the three main components of plant material allows both production of high quality cellulose and hemicellulose, especially well-suited for the enzymatic process, and Biolignin™, a pure form of lignin that may be sold commercially as a high value, environmentally friendly alternative to petroleum-derived chemicals. The technology has garnered industry acclaim in winning the Pierre Potier Prize for Innovation in Chemistry and Frost & Sullivan's 2013 French Visionary Innovation Award. Under the collaboration agreement, Dyadic and CIMV will work together to develop more efficient, fully integrated processes to produce environmentally low impact biofuels and bio- based chemicals. Dyadic anticipates supplying enzymes to CIMV's planned 2015 demonstration plant, as well as, licensing its C1 technology for on-site production of enzymes at CIMV's future commercial scale plants. To complete the value chain from biomass to bioethanol, CIMV is also collaborating with Taurus Energy AB, a leading developer of yeast technology to turn cellulosic sugar into bioethanol, and for its international development with Pierson Capital, a leading developer of major infrastructure, transportation and energy programs in the emerging markets of China, Africa and Latin America. Danai Brooks, Dyadic's Chief Operating Officer, stated "We are excited to have yet another leading technology developer of second generation biofuels and bio-based chemicals recognize the power and performance of Dyadic's C1 enzyme technology. Our C1 enzyme technology, coupled with CIMV's biomass pretreatment technology and Pierson Capital's established connections in emerging markets, can substantially broaden Dyadic's footprint. Our scientists are working closely with CIMV scientists to tailor our C1 enzyme technology to CIMV's high quality cellulose and hemicellulose, which we expect will significantly enhance our capabilities as an integrated technology offering." Thiery Scholastique, CIMV's Chief Executive Officer, added "We are very eager to partner with Dyadic. We are already collaborating together on Biolignin™ depolymerization under the EU funded Biomimetic project. This new collaboration allows us to appreciate Dyadic's technology and we have decided to extend our partnership on industrial sugars production activity. Together, we have demonstrated the ability to create high yields of fermentable sugars from our purer plant material using Dyadic's CMAX™ enzymes. We believe that this collaboration will lead to more efficient and lower cost enzymes that can be produced onsite at CIMV's commercial biorefineries." Lactic Acid Market Estimated to Reach USD 3,577.5 Mn by 2019: MarketsandMarkets SpecialChem - Aug 20, 2014
20 The report, "Lactic Acid Market by Application (Biodegradable Polymer, Food & Beverage, Personal Care & Pharmaceutical) & Polylactic Acid Market by Application (Packaging, Agriculture, Automobile, Electronics, Textile) & Geography - Global Trends & Forecasts to 2019 – 4000 euros" defines the lactic acid and polylactic acid markets and segments with analyses and projections of the size of each market, based on their sub-segments, in terms of value and volume. It also identifies the driving and restraining factors for the lactic acid and polylactic acid markets with analyses of trends, opportunities, burning issues, and winning imperatives. It also gives key information of the industry’s value chain, the total pool of key players, market classification, and segmentation according to industry trends to the bottom-most level, along with region-wise markets and key developments in the lactic acid and polylactic acid markets. Extensive qualitative and further quantitative analyses were also carried out from all the numbers arrived at in the complete market engineering process, to list out key information. The lactic acid and poly lactic acid markets are driven by the key market players with new product launches as their preferred strategy to sustain the competition in the market. In 2013, packaging was the largest application for the PLA market, followed by textiles. The others segment includes biomedical devices and domestic goods. The polylactic acid market is witnessing a high growth owing to increasing awareness among consumers and plastic manufacturers regarding the environment, coupled with support from government legislations and increasing landfill waste in various regions. Polylactic acid is not only a biodegradable polymer, but is also a complete bio-based polymer. The global climate change-related issues are projected to drive the demand for PLA in various applications such as food packaging films, food packaging trays, agricultural mulch film, electronic appliances, automotive components, products made from injection molding process, and textiles. The polylactic acid market is projected to be worth $5,010.7 million by 2019, and is projected to grow at a CAGR of 20.8% in the next five years. In recent years, in the food & beverage industry, the demand for PLA has become greater when compared to that of lactic acid. PLA usage, especially in the plastics packaging, containers, and cutlery markets, is being highly promoted owing to increasing regulatory concerns and environment friendly characteristics. The market for lactic acid is growing as it is largely used in various industrial applications such as in biodegradable polymers, food & beverages, personal care products, and pharmaceutical industries. The lactic acid market is mainly driven by its end-use industries. In 2013, Biodegradable polymers formed the largest application for lactic acid, followed by food and beverages. The lactic acid market is estimated to grow at a CAGR of 18.8% from 2014 to reach $3,577.5 million by 2019. The report includes development strategies and product portfolios of the leading companies. The profiles of leading companies such as Nature works LLC (U.S.), Synbra Technology B.V (Netherlands), Purac (Netherlands) have been included in the report. The report further provides qualitative analysis of the prominent market players and their preferred development strategies.
Vous pouvez aussi lire