Objectifs de l'enseignement des mathématiques. Construire une séquence, un cours. Outils. Evaluation

La page est créée Oceane Marie
 
CONTINUER À LIRE
Objectifs de l'enseignement des mathématiques. Construire une séquence, un cours. Outils. Evaluation
“Objectifs de l’enseignement des
         mathématiques.
Construire une séquence, un cours.
        Outils. Evaluation”
PLAN
I. CREATION DE SEQUENCES : DIFFERENTES PHASES POSSIBLES ................................... 3
   Phase 1: Lecture des programmes et documents d’accompagnements, recherches
  documentaires..................................................................................................................................... 3
        Phase 2: Evaluation diagnostique - Préparation des apprentissages.......................................... 3
        Phase 3: Activité de découverte- Mise en œuvre d’une situation-problème ............................. 4
        Phase 4: Reformulation du savoir par les élèves......................................................................... 7
        Phase 5: Démonstration - Admise ou pas ................................................................................... 7
        Phase 6: Entraînements de base ................................................................................................. 7
        Phase 7: Institutionnalisation ...................................................................................................... 8
        Phase 8: Consolidation du savoir au travers de tâches complexes ............................................. 9
        Phase 9: Entretien des savoirs - Approfondissement sur la durée ........................................... 10
        Récapitulatif .............................................................................................................................. 11

II. Création d’une séance (pour 55 min de Mathématiques) ....................................... 11
III. Travail à donner en devoirs (pour continuer à faire des Mathématiques) ............. 12
IV. Suivi des élèves – Aide pour les élèves en difficultés : Pour dédramatiser la
difficulté des Mathématiques et donner à voir le progrès des élèves ......................... 12
I. CREATION DE SEQUENCES : DIFFERENTES PHASES
POSSIBLES
BO : « Une séquence est constituée en général de plusieurs séances relatives à un même sujet
d’étude »

     Phase 1: Lecture des programmes et documents d’accompagnements,
      recherches documentaires

    A. Lire le programme
     Prendre en compte les « en-têtes » des programmes pour en retirer les objectifs principaux
       d’enseignement des mathématiques
     Voir quelles sont les capacités exigibles :
            o celles du Socle commun
            o celles du Programme
     Diviser, cibler tous les objectifs liés à un thème donné (vers une progression spiralée…)

    B. Penser à intégrer dans sa séquence:
     les TICE, comme appui à la compréhension,
     des problèmes intéressants et motivants (type narration de recherche, tâches complexes…),
     des situations de classe propices au développement de l’activité personnelle de l’élève, au
       raisonnement, à l’autonomie et à l’initiative (travail de groupe, débat en classe sur des
       productions d’élèves, …)

BO : « Les modes de gestion des regroupements d’élèves, du binôme au groupe-classe, selon les
activités et les objectifs visés, favorisent l’expression sous toutes ses formes et permettent un accès
progressif à l’autonomie »

    C. Faire les liens possibles avec les autres thèmes, champs de données du programme
    D. Lire également les programmes des autres niveaux pour pouvoir comprendre comment le
       nouveau savoir se met en place au fil des années.
    E. Lire les documents d’accompagnements (EDUSCOL)
    F. Recherches documentaires (Livres pédagogiques, IREM, APMEP, Internet…)
    G. Penser aux thèmes de convergences possibles

BO :
       Importance du mode de pensée statistique dans le regard scientifique sur le monde
       Développement durable
       Energie
       Météorologie et climatologie
       Santé
       Sécurité

     Phase 2: Evaluation diagnostique - Préparation des apprentissages

                                      Evaluation diagnostique :
                                 Cela ne consiste pas à faire
                                 des révisions systématiques
L’objectif est de connaitre les « savoirs purs, actuels » des élèves

     Repérer, observer, apprécier les réussites et difficultés des élèves afin de:

BO : « Mise en valeur des points forts et repérage des difficultés de chaque élève à partir
d’évaluations diagnostiques. Repérer les acquis initiaux des élèves »

     Préparer un apprentissage, un nouveau savoir, adapter, organiser son cours par rapport à la
      classe

      Préparer la suite des apprentissages: (peut se faire bien en amont de la phase 2)
     Préparer les « outils nécessaires » pour mener à bien les activités de découvertes( phase 2)
     Travailler sur les compétences exigibles au socle de l’année en cours ou des années
      antérieures.

BO : « Cet entretien doit être assuré non par des révisions systématiques mais par des activités
appropriées, notamment des résolutions de problèmes. »

     Plusieurs formes possibles: QCM, exercices rapides privilégiant le raisonnement (sans
      rédaction), brainstorming,…

     Phase 3: Activité de découverte- Mise en œuvre d’une situation-problème

                Proposer un problème qui vise la construction d’un nouveau savoir.

    a. Créer une activité avec:

     des questions ouvertes,

BO : « les situations plus ouvertes […] jouent un rôle important »

     où tous les élèves peuvent entrer dans le sujet (notamment avec des compétences du socle)

BO : « Permettre un démarrage possible pour tous les élèves »

     Permettant d’élaborer plusieurs types de démarches possibles

BO : « Créer rapidement un problème assez riche pour provoquer des conjectures »
« Fournir aux élèves, aussi souvent que possible, des occasions de contrôle de leurs résultats […] en
prévoyant divers cheminements qui permettent de fructueuses comparaisons »

Le but de l’activité est de présenter le nouveau savoir comme un outil efficace pour franchir
l’obstacle

BO : Des situations créant un problème dont la solution fait intervenir des « outils », c’est-à-dire
des techniques ou des notions déjà acquises, afin d’aboutir à la découverte ou à l’assimilation de
notions nouvelles[…]elles fournissent à leur tour de nouveaux « outils » […]
Au travers de ces problèmes, les élèves doivent se rendre compte de l’insuffisance de leurs
conceptions antérieures

BO : « identifier les conceptions ou les représentations des élèves, ainsi que les difficultés
persistantes (analyse d'obstacles cognitifs et d’erreurs) »

     Bien penser à l’analyse à priori de l’activité (voir création d’une séance)

BO : « prendre en compte les objectifs visés et une analyse préalable des savoirs en jeu, ainsi que
les acquis et les conceptions initiales des élèves »
« élaborer un scénario d’enseignement en fonction de l’analyse de ces différents éléments. »

    b. Privilégier le travail de groupe et le débat mathématique en classe (notamment en
       examinant, critiquant les productions de chaque groupe)

BO : « moments de débat interne au groupe d’élèves »
« confrontation des propositions, débat autour de leur validité, recherche d’arguments »
« différentes stratégies qui doivent être explicitées et confrontées, sans nécessairement que soit
privilégiée l’une d’entre elles. »

    c. Penser à intégrer si possible des activités utilisant les TIC qui permettent d’établir des
       conjectures

BO : « L’utilisation d’outils logiciels est particulièrement importante et doit être privilégiée chaque
fois qu’elle est une aide à l’imagination, à la formulation de conjectures ou au calcul »
Exemple de situations-problèmes :
BO : « Dans le domaine du calcul littéral, les exigences du socle ne portent que sur les expressions
du premier degré à une lettre et ne comportent pas les techniques de résolution algébrique ou
graphique de l’équation du premier degré à une inconnue »
« Faire des mathématiques, c’est se les approprier par l’imagination, la recherche, le tâtonnement
et la résolution de problèmes, dans la rigueur de la logique et le plaisir de la découverte. »

     Phase 4: Reformulation du savoir par les élèves

Le professeur demande aux élève de formuler avec leurs propres mots le nouveau savoir:
« règle-élève »
                             « Qu’avons-nous appris aujourd’hui? »

BO : Reformulation écrite par les élèves, avec l’aide du professeur, des connaissances nouvelles
acquises

     Phase 5: Démonstration - Admise ou pas

Faire émettre le doute sur la généralité du résultat puis soit:

     On admet le résultat et on le précise aux élèves:
     « Les mathématiciens ont démontré cette propriété mais on l’admettra cette année »

BO : « l’enseignant doit préciser explicitement qu’un résultat mathématique qui n’est pas
démontré est admis. »

     On démontre la propriété en favorisant le raisonnement (idées clés de la démonstration)

     Soit, on reporte la démonstration ou la donner sous forme de devoir à la maison

     Phase 6: Entraînements de base

    a. Evaluer la compréhension du nouveau savoir sans rédaction imposée:
       Favoriser le raisonnement , ainsi que l’autonomie et l’initiative

    b. Bien distinguer les phases :
           o de recherche, de raisonnement
           o de mise en forme, de communication

BO : « deux étapes doivent être distinguées :
la première, et la plus importante, est la recherche et la production d’une preuve ;
la seconde, consistant à mettre en forme la preuve, ne doit pas donner lieu à un formalisme
prématuré »
« important de ménager une grande progressivité dans l’apprentissage de la démonstration »
« faire une large part au raisonnement, enjeu principal de la formation mathématique au collège »
« Dans le cadre du socle commun, qui doit être maîtrisé par tous les élèves, c’est la première étape,
qui doit être privilégiée, notamment par une valorisation de l’argumentation orale »

       But : Comprendre que bien rédiger est une nécessité pour se faire comprendre des autres
        élèves (le professeur comprend facilement, c’est des autres élèves qu’il doit se faire
        comprendre).

BO : « La mise en forme d’une preuve gagnent à être travaillées collectivement, avec l’aide du
professeur, et à être présentées comme une façon convaincante de communiquer un raisonnement
aussi bien à l’oral que par écrit »
   Méthode : Choisir diverses productions et les soumettre à la critique via un débat ou travail
        de groupe et se mettre d’accord sur une ou plusieurs bonnes rédactions.

BO : « Un moyen efficace pour faire admettre la nécessité d’un langage précis, en évitant que cette
exigence soit ressentie comme arbitraire par les élèves, est le passage du « faire » au « faire faire »
(exercices de figures téléphonées , de description d’une méthode de résolution, …)
« les mathématiques participent à la maîtrise de la langue, tant à l’écrit […] qu’à l’oral, en
particulier par le débat mathématique et la pratique de l’argumentation »

       Proposer également des exemples où la propriété ne s’applique pas:
                                 Travail sur les contre-exemples

     Phase 7: Institutionnalisation

     Institutionnaliser la propriété en la décontextualisant lorsque l’on « sent » que la notion a
      pris du sens chez les élèves.

BO : « les connaissances doivent être identifiées, nommées et progressivement détachées de leur
contexte d’apprentissage.»

        Le but est que le nouveau savoir prend un statut plus général, qui n’est plus forcément lié à
        la situation de découverte, afin que les élèves puissent le mobiliser dans d’autres contextes.

R. Douady : Le chercheur crée des concepts qui jouent le rôle d’outil pour résoudre des problèmes.
Lors du passage à la communauté scientifique, le concept est décontextualisé de façon à pouvoir
resservir. Il devient alors un objet de savoir et prend place dans un édifice plus large, le savoir
scientifique du moment : Dialectique outil-objet.

     Possibilité d’illustrer la propriété, le statut de généralité à l’aide des TIC

     Remarque: Certains chapitres comme les statistiques peuvent être traités en « fil rouge »
      pendant toute l’année en multipliant les occasions d’être confronté au nouveau savoir.
      L’institutionnalisation peut se faire ici qu’en fin d’année!
 Phase 8: Consolidation du savoir au travers de tâches complexes

La tâche complexe est une tâche mobilisant des ressources internes (culture, capacités,
connaissances, vécu...) et externes (aides méthodologiques, protocoles, fiches techniques, ressources
documentaires...).
Les tâches complexes permettent de motiver les élèves et de les former à gérer des situations
concrètes de la vie réelle en mobilisant les connaissances, les capacités et les attitudes acquises pour
en développer de nouvelles.
Elle fait donc partie intégrante de la notion de compétence.

Vade-mecum : « […] tâche complexe, exercice ou problème qui, posé sous une forme ouverte et
mettant en oeuvre une combinaison de plusieurs procédures et mobilisant plusieurs ressources,
rend possible la mise en oeuvre de stratégies personnelles diverses et donc pas exclusivement la
stratégie experte. »

BO : « L’évaluation de la maîtrise d’une capacité […] ne peut pas se limiter à la seule vérification de
son fonctionnement dans des exercices techniques.

Il faut aussi s’assurer que les élèves sont capables de la mobiliser d’eux-mêmes, en même temps
que d’autres capacités, dans des situations où leur usage n’est pas explicitement sollicité dans la
question posée. »

Une tâche complexe ne se réduit pas à l’application d’une procédure automatique.
Chaque élève peut adopter une démarche personnelle de résolution pour réaliser la tâche.
Après avoir mis l’élève dans une situation réaliste destinée à motiver la recherche, on lui précise ce
qu'il doit faire, de façon ouverte, sans détailler, et ce qu'il doit produire, mais sans lui dire comment
s'y prendre ni lui donner de procédure

                            3 niveaux de maitrise (Vademecum – B. Rey) :

     Premier niveau de maîtrise :
      La simple restitution de savoir dans des exercices d’application à l’identique. Par exemple
      être capable, dans une situation simple dans laquelle le contexte d’utilisation d’un théorème
      est explicite, d’utiliser ce théorème.
     Second niveau de maîtrise :
      Réinvestissement de la ressource dans une situation simple mais inédite.
     Troisième niveau de maîtrise :
      Savoir choisir et combiner plusieurs ressources autrement dit être capable d’identifier des
      contextes pertinents d’utilisation de cette ressource (l’utiliser correctement et quand il le
      faut, ne pas l’utiliser quand il ne le faut pas) y compris dans des situations inédites, voire de
      tâches complexes

     Proposer des tâches complexes de niveau 2 voire 3.
       Attention, il n’est pas obligé de faire le niveau 2 avant le 3!
       Ce qui compte, c’est de varier les différents niveaux de maitrise dans la durée.
     Travail progressif sur la mise en forme, la rédaction en mutualisant les diverses productions
    d’élèves
 Phase 9: Entretien des savoirs - Approfondissement sur la durée

     Proposer régulièrement, sur la durée des exercices sur le thème en question (Tâches
    complexes, DM…) - Idée de « retour », de progression spiralée

BO : « tout apprentissage se réalise dans la durée, dans des activités variées et que toute
acquisition nouvelle doit être reprise, consolidée et enrichie. »

     Approfondir le sujet suivant le niveau de la classe:
       Dépasser le Socle qui est nécessaire à tous
       et arriver au Programme qui est une ambition pour tous

Vade-mecum : Deux objectifs de formation : le souhaitable pour tous (le programme), le nécessaire
à tous (le Socle commun).

         Proposer des problèmes plus complexes où la notion se recouvre sur plusieurs champs
        du programme…

BO : « l’enseignant réalise, avec les élèves, des synthèses plus globales, à l’issue d’une période
d’étude et propose des problèmes dont la résolution nécessite l’utilisation de plusieurs
connaissances. »

     Varier les différents niveaux de maitrises dans les exercices :

                                  Donner du temps à tous les élèves
                                   pour acquérir le nouveau savoir

BO : « il convient d’envisager que c’est parfois dans le cadre d’un travail ultérieur, en travaillant sur
d’autres aspects de la notion en jeu ou sur d’autres concepts, qu’une capacité non maîtrisée à un
certain moment pourra être consolidée. »
 Récapitulatif

Phase 1: Lecture des programmes, documents d’accompagnements…                               Avant

Phase 2: Préparation des apprentissages, évaluation diagnostique

Phase 3: Activité de découverte: Situation-problème
                                                                                            Pendant
Phase 4: Reformulation du savoir par l’élève

Phase 5: Démonstration admise ou non

Phase 6: Entrainement de base (favoriser le raisonnement)                                    Juste après

Phase 7: Institutionnalisation - Illustration TIC
                                                                                             Après
Phase 8: Consolidation du savoir (mise en place progressive de la mise en forme)
                                                                                                Sur la durée
Phase 9: Entretien des savoirs - Approfondissement sur la durée

Remarques:
    L’ordre des phases peut-être modifié
    Les différentes phases peuvent-être reprises plusieurs fois pour une même séquence
    Procéder au découpage de la séquence en plusieurs phases à intégrer dans une progression
      spiralée sur l’année

II. Création d’une séance (pour 55 min de Mathématiques)
                                               Quelques conseils:

     Analyse à priori ou scénario d’usage avec:
     Différentes phases de la séance (correction exercices, activités de découvertes, fin de
      séance…)
                       Bien distinguer les phases en cours devant les élèves
     Timing approximatif de chaque phase
     Rôle du professeur dans chaque phase
                        Etre clair dans les consignes apportées aux élèves
     Rôle de l’élève dans chaque phase:
                   « Travail de l’élève à expliciter en classe - métier de l’élève »
     Support et matériels utilisés
     Ecrire au début toute la simulation du cours peut aider à mieux gérer sa séance

                                     La meilleure improvisation est
                                   celle que l’on a le mieux anticipée

                             Exemples de scénarios d’usages (cf. ci-joint)

     Scénario d'usage T0 (Annexe 1)
     Autre exemple (Annexe 2)

Attention: Il faut être capable de se détacher de la simulation devant une classe et s’adapter au
rythme des élèves. C’EST ESSENTIEL !
Déroulement possible d’une séance

    Correction d’exercices ou exercices simples pour entretenir un savoir, préparer un
     apprentissage (niveau socle), calcul mental…
    Présenter ce qui va être fait aujourd’hui
    Reprise des phases vues dans le déroulement d’une séquence (aller au moins si possible à la
     phase 5: entrainements de bases)
    Fin de séance: Donner le travail à faire et surtout demander aux élèves:
                            « Qu’avons-nous appris aujourd’hui? »

III. Travail à donner en devoirs (pour continuer à faire des
Mathématiques)
Au collège, on distingue plusieurs types de travaux personnels (BO) :
     Résolution d’exercices d’entrainement – Etude du cours :
        Ils doivent accompagner en règle générale toutes les séances de mathématiques
     Travaux individuels de rédactions : (notamment les fameux « devoirs à la maison ») qui
        peuvent prendre des formes variées :
     Travaux possibles sur chaque phase vue précédemment.
     Résolution de problèmes variés développant les capacités de raisonnement (NR, problème
        ouvert, énigmes, tâches complexes…)
     Recherche documentaire (exposés, biographie…)
     Enquête, sondage, constitution d’un dossier sur un thème donné.
     Compte-rendu, synthèse d’une séance de travaux dirigés (rédiger une démonstration vue en
        cours…)
     Construction d’objets géométriques divers…

                            La fréquence de ces travaux doit être élevée.

                                   Mieux faire « souvent et court »
                                     que « rarement et long » !

IV. Suivi des élèves – Aide pour les élèves en difficultés :
Pour dédramatiser la difficulté des Mathématiques et
donner à voir le progrès des élèves
                           Quelques conseils pour les élèves en difficultés

    Penser à interroger tous les élèves dans un cours
     Repérer ainsi rapidement les élèves en difficultés
    Etre à l’écoute des élèves dans les diverses phases vues précédemment
     Valoriser leurs réussites et les aider sur les points où ils sont en difficultés par le biais de
     questions ouvertes (pour ainsi favoriser toujours le raisonnement)

Vade-mecum : « à intervenir de façon suffisamment ouverte pour amener l’élève à poursuivre son
raisonnement »
 Aider certains élèves dans la capacité C1 (reformuler…) afin de lui permettre de franchir
      d’autres obstacles liés à C2, C3, C4 – Travail sur l’oral

BO : L’enseignant guide le travail des élèves et, éventuellement, l’aide à reformuler les questions
pour s’assurer de leur sens.

Vade-mecum : Par exemple un élève qui reformule bien la consigne et qui montre qu’il comprend ce
qui lui est demandé, peut à cette occasion montrer C1.

     Evaluer les élèves pendant le cours sur les difficultés rencontrées (raisonnement, rédaction,
      lecture de consigne, appliquer des consignes…)
     On peut par exemple lors de phase de réflexion interviewer les élèves sur leur démarche
      personnelle…

Vade-mecum : « à mener de petites interviews, pour mieux analyser les erreurs commises et la
nature des blocages »

     Proposer des aides personnalisées, aides les TIC, internet…

Vade-mecum : « à lever certains obstacles, dont l’évaluation est différée parce que les élèves ne
sont pas encore prêts »

     Créer des grilles d’évaluation et fiches de suivi
     Favoriser l’autoévaluation de l’élève (autonomie et initiative)
Exemples de grilles d’évaluation et fiche de suivi de 5ème…
  A EVITER : TROP LOURD à gérer - Pas d’usines à cases !

                   Fiche de suivi – 5ème
Bon exemple permettant de repérer et valoriser les réussites des élèves1

                                                 Les 8 premières colonnes correspondent aux 8 items de la
                                                 compétence 3 de la grille de référence du socle commun que les
                                                 professeurs     de      mathématiques      doivent     renseigner
                                                 positivement :
                                                 D1 : Organisation et gestion de données
                                                 D2 : Nombres et calculs
                                                 D3 : Géométrie
                                                 D4 : Grandeurs et mesures
                                                 C1, C2, C3, C4 : Les 4 items du domaine « Pratiquer une
                                                 démarche scientifique et technologique, résoudre des
                                                 problèmes
                                                 TIC : Techniques usuelles de l’information et de la
                                                 communication : Lié à la compétence 4 du Socle Commun (B2i)
                                                 I : Investissement personnel (que l’on peut également évaluer en
                                                 travail de groupe) lié aux compétences 6 et 7 du Socle Commun

    Une grille plus détaillée pour le professeur dans le cadre d’une remédiation2

1
  Issue du document ressource sur le site académique de la Réunion en Mathématiques : ICOSAWEB
Légèrement modifiée pour être conforme aux dernières recommandations de la DGESCO.
2
  Adaptée par D. MICHEL – Collège de Cambuston
Un autre bon exemple:3

3
    Créée par M. GRONDIN – Collège de Montgaillard
Vous pouvez aussi lire